《黑龙江省牡丹江市爱民区第一高级中学2024届高三第二次调研考试(数学试题理)试卷》由会员分享,可在线阅读,更多相关《黑龙江省牡丹江市爱民区第一高级中学2024届高三第二次调研考试(数学试题理)试卷(23页珍藏版)》请在金锄头文库上搜索。
1、黑龙江省牡丹江市爱民区第一高级中学2024届高三第二次调研考试(数学试题理)试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知的内角、的对边分别为、,且,为边上的中线,若,则的面积为( )ABCD2已知是虚数单位,若,则实数( )A或B-1或1C1D3已知某
2、批零件的长度误差(单位:毫米)服从正态分布,从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量服从正态分布,则,)A4.56%B13.59%C27.18%D31.74%4已知数列为等差数列,为其前项和,则( )A7B14C28D845已知函数,且在上是单调函数,则下列说法正确的是( )ABC函数在上单调递减D函数的图像关于点对称6已知三棱锥中,为的中点,平面,则有下列四个结论:若为的外心,则;若为等边三角形,则;当时,与平面所成的角的范围为;当时,为平面内一动点,若OM平面,则在内轨迹的长度为1其中正确的个数是( )A1B1C3D47二项式的展开式中,常数项为( )A
3、B80CD1608已知定义在R上的偶函数满足,当时,函数(),则函数与函数的图象的所有交点的横坐标之和为( )A2B4C5D69己知抛物线的焦点为,准线为,点分别在抛物线上,且,直线交于点,垂足为,若的面积为,则到的距离为( )ABC8D610已知等差数列中,则( )A20B18C16D1411如图,平面与平面相交于,点,点,则下列叙述错误的是( )A直线与异面B过只有唯一平面与平行C过点只能作唯一平面与垂直D过一定能作一平面与垂直12已知函数,若函数在上有3个零点,则实数的取值范围为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13某四棱锥的三视图如图所示,那么此四棱锥的体积
4、为_.14已知函数 函数 ,其中,若函数 恰有4个零点,则的取值范围是_15已知为椭圆的左、右焦点,点在椭圆上移动时,的内心的轨迹方程为_16已知椭圆的左、右焦点分别为、,过椭圆的右焦点作一条直线交椭圆于点、.则内切圆面积的最大值是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知顶点是坐标原点的抛物线的焦点在轴正半轴上,圆心在直线上的圆与轴相切,且关于点对称.(1)求和的标准方程;(2)过点的直线与交于,与交于,求证:.18(12分)已知抛物线:y22px(p0)的焦点为F,P是抛物线上一点,且在第一象限,满足(2,2)(1)求抛物线的方程;(2)已知经过点
5、A(3,2)的直线交抛物线于M,N两点,经过定点B(3,6)和M的直线与抛物线交于另一点L,问直线NL是否恒过定点,如果过定点,求出该定点,否则说明理由19(12分)已知函数()(1)函数在点处的切线方程为,求函数的极值;(2)当时,对于任意,当时,不等式恒成立,求出实数的取值范围.20(12分)已知动圆过定点,且与直线相切,动圆圆心的轨迹为,过作斜率为的直线与交于两点,过分别作的切线,两切线的交点为,直线与交于两点(1)证明:点始终在直线上且;(2)求四边形的面积的最小值21(12分)等差数列的前项和为,已知,(1)求数列的通项公式;(2)设数列的前项和为,求使成立的的最小值22(10分)这
6、次新冠肺炎疫情,是新中国成立以来在我国发生的传播速度最快、感染范围最广、防控难度最大的一次重大突发公共卫生事件.中华民族历史上经历过很多磨难,但从来没有被压垮过,而是愈挫愈勇,不断在磨难中成长,从磨难中奋起.在这次疫情中,全国人民展现出既有责任担当之勇、又有科学防控之智.某校高三学生也展开了对这次疫情的研究,一名同学在数据统计中发现,从2020年2月1日至2月7日期间,日期和全国累计报告确诊病例数量(单位:万人)之间的关系如下表:日期1234567全国累计报告确诊病例数量(万人)1.41.72.02.42.83.13.5(1)根据表中的数据,运用相关系数进行分析说明,是否可以用线性回归模型拟合
7、与的关系? (2)求出关于的线性回归方程(系数精确到0.01).并预测2月10日全国累计报告确诊病例数.参考数据:,.参考公式:相关系数回归方程中斜率和截距的最小二乘估计公式分别为:,.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解题分析】延长到,使,连接,则四边形为平行四边形,根据余弦定理可求出,进而可得的面积.【题目详解】解:延长到,使,连接,则四边形为平行四边形,则,在中,则,得,.故选:B.【题目点拨】本题考查余弦定理的应用,考查三角形面积公式的应用,其中根据中线作出平行四边形是关键,是中档题.2B【解题分析】由题
8、意得,然后求解即可【题目详解】,.又,.【题目点拨】本题考查复数的运算,属于基础题3B【解题分析】试题分析:由题意故选B考点:正态分布4D【解题分析】利用等差数列的通项公式,可求解得到,利用求和公式和等差中项的性质,即得解【题目详解】,解得故选:D【题目点拨】本题考查了等差数列的通项公式、求和公式和等差中项,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.5B【解题分析】根据函数,在上是单调函数,确定 ,然后一一验证,A.若,则,由,得,但.B.由,确定,再求解验证.C.利用整体法根据正弦函数的单调性判断.D.计算是否为0.【题目详解】因为函数,在上是单调函数,所以 ,即,所以 ,若
9、,则,又因为,即,解得, 而,故A错误.由,不妨令 ,得由,得 或当时,不合题意.当时,此时所以,故B正确.因为,函数,在上是单调递增,故C错误.,故D错误.故选:B【题目点拨】本题主要考查三角函数的性质及其应用,还考查了运算求解的能力,属于较难的题.6C【解题分析】由线面垂直的性质,结合勾股定理可判断正确; 反证法由线面垂直的判断和性质可判断错误;由线面角的定义和转化为三棱锥的体积,求得C到平面PAB的距离的范围,可判断正确;由面面平行的性质定理可得线面平行,可得正确.【题目详解】画出图形:若为的外心,则,平面,可得,即,正确;若为等边三角形,又可得平面,即,由可得,矛盾,错误;若,设与平面
10、所成角为可得,设到平面的距离为由可得即有,当且仅当取等号.可得的最大值为, 即的范围为,正确;取中点,的中点,连接由中位线定理可得平面平面可得在线段上,而,可得正确;所以正确的是:故选:C【题目点拨】此题考查立体几何中与点、线、面位置关系有关的命题的真假判断,处理这类问题,可以用已知的定理或性质来证明,也可以用反证法来说明命题的不成立.属于一般性题目.7A【解题分析】求出二项式的展开式的通式,再令的次数为零,可得结果.【题目详解】解:二项式展开式的通式为,令,解得,则常数项为.故选:A.【题目点拨】本题考查二项式定理指定项的求解,关键是熟练应用二项展开式的通式,是基础题.8B【解题分析】由函数
11、的性质可得:的图像关于直线对称且关于轴对称,函数()的图像也关于对称,由函数图像的作法可知两个图像有四个交点,且两两关于直线对称,则与的图像所有交点的横坐标之和为4得解.【题目详解】由偶函数满足,可得的图像关于直线对称且关于轴对称,函数()的图像也关于对称,函数的图像与函数()的图像的位置关系如图所示,可知两个图像有四个交点,且两两关于直线对称,则与的图像所有交点的横坐标之和为4.故选:B【题目点拨】本题主要考查了函数的性质,考查了数形结合的思想,掌握函数的性质是解题的关键,属于中档题.9D【解题分析】作,垂足为,过点N作,垂足为G,设,则,结合图形可得,从而可求出,进而可求得,由的面积即可求
12、出,再结合为线段的中点,即可求出到的距离【题目详解】如图所示,作,垂足为,设,由,得,则,.过点N作,垂足为G,则,所以在中,所以,所以,在中,所以,所以,所以 解得,因为,所以为线段的中点,所以F到l的距离为故选:D【题目点拨】本题主要考查抛物线的几何性质及平面几何的有关知识,属于中档题10A【解题分析】设等差数列的公差为,再利用基本量法与题中给的条件列式求解首项与公差,进而求得即可.【题目详解】设等差数列的公差为.由得,解得.所以.故选:A【题目点拨】本题主要考查了等差数列的基本量求解,属于基础题.11D【解题分析】根据异面直线的判定定理、定义和性质,结合线面垂直的关系,对选项中的命题判断
13、.【题目详解】A.假设直线与共面,则A,D,B,C共面,则AB,CD共面,与,矛盾, 故正确.B. 根据异面直线的性质知,过只有唯一平面与平行,故正确.C. 根据过一点有且只有一个平面与已知直线垂直知,故正确.D. 根据异面直线的性质知,过不一定能作一平面与垂直,故错误.故选:D【题目点拨】本题主要考查异面直线的定义,性质以及线面关系,还考查了理解辨析的能力,属于中档题.12B【解题分析】根据分段函数,分当,将问题转化为的零点问题,用数形结合的方法研究.【题目详解】当时,令,在是增函数,时,有一个零点,当时,令当时,在上单调递增,当时,在上单调递减,所以当时,取得最大值,因为在上有3个零点,所
14、以当时,有2个零点,如图所示:所以实数的取值范围为综上可得实数的取值范围为, 故选:B【题目点拨】本题主要考查了函数的零点问题,还考查了数形结合的思想和转化问题的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13【解题分析】利用三视图判断几何体的形状,然后通过三视图的数据求解几何体的体积.【题目详解】如图:此四棱锥的高为,底面是长为,宽为2的矩形,所以体积.所以本题答案为.【题目点拨】本题考查几何体与三视图的对应关系,几何体体积的求法,考查空间想象能力与计算能力.解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断.14【解题分析】, ,函数