2022年吉林延边中考数学试题(含答案)

上传人:wo****o 文档编号:352582436 上传时间:2023-05-28 格式:DOCX 页数:28 大小:954.19KB
返回 下载 相关 举报
2022年吉林延边中考数学试题(含答案)_第1页
第1页 / 共28页
2022年吉林延边中考数学试题(含答案)_第2页
第2页 / 共28页
2022年吉林延边中考数学试题(含答案)_第3页
第3页 / 共28页
2022年吉林延边中考数学试题(含答案)_第4页
第4页 / 共28页
2022年吉林延边中考数学试题(含答案)_第5页
第5页 / 共28页
点击查看更多>>
资源描述

《2022年吉林延边中考数学试题(含答案)》由会员分享,可在线阅读,更多相关《2022年吉林延边中考数学试题(含答案)(28页珍藏版)》请在金锄头文库上搜索。

1、年寒窗苦读日,只盼金榜题名时,祝你考试拿高分,鲤鱼跳龙门!加油!2022年吉林延边中考数学试题及答案数学试题共6页,包括六道大题,共26道小题;全卷满分120分。考试时间120分钟;考试结束后,将本试题和答题卡一并交回注意事项:1答题前,请您将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内2答题时,请按照考试要求在答题卡上的指定区域内作答,在草稿纸、试题上答题无效一、单项选择题(每小题2分,共12分)1. 吉林松花石有“石中之宝”的美誉,用它制作的砚台叫松花砚,能与中国四大名砚媲美下图是一款松花砚的示意图,其俯视图为( )A. B. C. D. 【答案】C【解析】【分析】

2、根据俯视图的定义(从上面观察物体所得到的视图)即可得【详解】解:其俯视图是由两个同心圆(不含圆心)组成,即为 ,故选:C【点睛】本题考查了俯视图,熟记定义是解题关键2. 要使算式的运算结果最大,则“”内应填入的运算符号为( )A. +B. -C. D. 【答案】A【解析】【分析】将各选项运算符号代入计算即可得【详解】解:,因为,所以要使运算结果最大,应填入的运算符号为,故选:A【点睛】本题考查有理数的加减乘除运算,熟练掌握运算法则是解题关键3. 与2的差不大于0,用不等式表示为( )A. B. C. D. 【答案】D【解析】【分析】根据差运算、不大于的定义列出不等式即可【详解】解:由题意,用不

3、等式表示为,故选:D【点睛】本题考查了列一元一次不等式,熟练掌握“不大于是指小于或等于”是解题关键4. 实数,在数轴上对应点的位置如图所示,则,的大小关系为( )A. B. C. D. 无法确定【答案】B【解析】【分析】在以向右为正方向的数轴上,右边的点表示的数大于左边的点表示的数,根据此结论即可得出结论【详解】由图知,数轴上数b表示的点在数a表示的点的右边,则ba故选:B【点睛】本题考查了数轴上有理数大小的比较,是基础题5. 如图,如果,那么,其依据可以简单说成( )A 两直线平行,内错角相等B. 内错角相等,两直线平行C. 两直线平行,同位角相等D. 同位角相等,两直线平行【答案】D【解析

4、】【分析】根据“同位角相等,两直线平行”即可得【详解】解:因为与是一对相等的同位角,得出结论是,所以其依据可以简单说成同位角相等,两直线平行,故选:D【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题关键6. 如图,在中,以点为圆心,为半径作圆,当点在内且点在外时,的值可能是( )A. 2B. 3C. 4D. 5【答案】C【解析】【分析】先利用勾股定理可得,再根据“点在内且点在外”可得,由此即可得出答案【详解】解:在中,点在内且点在外,即,观察四个选项可知,只有选项C符合,故选:C【点睛】本题考查了勾股定理、点与圆的位置关系,熟练掌握点与圆的位置关系是解题关键二、填空题(每小题3分

5、,共24分)7. 实数的相反数是_【答案】【解析】【分析】根据只有符号不同的两个数为互为相反数进行解答【详解】解:根据相反数定义,可得的相反数是故答案为:【点睛】此题主要考查了实数的性质,关键是掌握相反数的定义8. 计算:=_【答案】【解析】【详解】试题分析:根据同底数幂的乘法性质,底数不变,指数相加,可直接结算,. 考点:同底数幂的乘法9. 篮球队要购买10个篮球,每个篮球元,一共需要_元(用含的代数式表示)【答案】【解析】【分析】根据“总费用购买篮球的数量每个篮球的价格”即可得【详解】解:由题意得:一共需要的费用为元,故答案为:【点睛】本题考查了列代数式,正确找出等量关系是解题关键10.

6、九章算术中记载了一道数学问题,其译文为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音h,是古代一种容量单位),1个大桶加上5个小桶可以盛酒2斛1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶可以盛酒斛、1个小桶可以盛酒斛根据题意,可列方程组为_【答案】#【解析】【分析】根据题中两个等量关系:5个大桶加上1个小桶可以盛酒3斛;1个大桶加上5个小桶可以盛酒2斛,列出方程组即可【详解】由题意得:故答案为:【点睛】本题考查了列二元一次方程组解实际问题,理解题意、找到等量关系并列出方程组是解题的关键11. 第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素如图,这个图

7、案绕着它的中心旋转角后能够与它本身重合,则角可以为_度(写出一个即可)【答案】60或120或180或240或300(写出一个即可)【解析】【分析】如图(见解析),求出图中正六边形的中心角,再根据旋转的定义即可得【详解】解:这个图案对应着如图所示的一个正六边形,它的中心角,角可以为或或或或,故答案:60或120或180或240或300(写出一个即可)【点睛】本题考查了正多边形的中心角、图形的旋转,熟练掌握正多边形的性质是解题关键12. 如图,在平面直角坐标系中,点的坐标为,点在轴正半轴上,以点为圆心,长为半径作弧,交轴正半轴于点,则点的坐标为_【答案】【解析】【分析】连接,先根据点的坐标可得,再

8、根据等腰三角形的判定可得是等腰三角形,然后根据等腰三角形的三线合一可得,由此即可得出答案【详解】解:如图,连接,点的坐标为,由同圆半径相等得:,是等腰三角形,(等腰三角形的三线合一),又点位于轴正半轴,点的坐标为,故答案为:【点睛】本题考查了同圆半径相等、等腰三角形的三线合一、点坐标等知识点,熟练掌握等腰三角形的三线合一是解题关键13. 如图,在矩形中,对角线,相交于点,点是边的中点,点在对角线上,且,连接若,则_【答案】#2.5【解析】【分析】由矩形的性质可得点F是OA的中点,从而EF是AOD的中位线,则由三角形中位线定理即可求得EF的长【详解】四边形ABCD是矩形,BD=AC=10,OA=

9、AC,OD=BD=5,即点F是OA的中点点是边的中点,EF是AOD的中位线,故答案为:【点睛】本题考查了矩形的性质,三角形中位线定理等知识,掌握中位线定理是本题的关键14. 如图,在半径为1的上顺次取点,连接,若,则与的长度之和为_(结果保留)【答案】#【解析】【分析】由圆周角定理得,根据弧长公式分别计算出与的长度,相减即可得到答案【详解】解:,又的半径为1,的长度= 又,的长度=与的长度之和=,故答案为:【点睛】本题主要考查了计算弧长,圆周角定理,熟练掌握弧长计算公式是解答本题的关键三、解答题(每小题5分,共20分)15. 如图,求证:【答案】证明见解析【解析】【分析】先利用三角形全等的判定

10、定理(定理)证出,再根据全等三角形的性质即可得【详解】证明:在和中,【点睛】本题考查了三角形全等的判定与性质,熟练掌握三角形全等的判定与性质是解题关键16. 下面是一道例题及其解答过程的一部分,其中是关于的多项式请写出多项式,并将该例题的解答过程补充完整例先去括号,再合并同类项:()解:() 【答案】,解答过程补充完整为【解析】【分析】利用除以可得,再根据合并同类项法则补充解答过程即可【详解】解:观察第一步可知,解得,将该例题的解答过程补充完整如下:,故答案为:【点睛】本题考查了多项式的乘除法、合并同类项,熟练掌握整式的运算法则是解题关键17. 长白山国家级自然保护区、松花湖风景区和净月潭国家

11、森林公园是吉林省著名的三个景区甲、乙两人用抽卡片的方式决定一个自己要去的景区他们准备了3张不透明的卡片,正面分别写上长白山、松花湖、净月潭卡片除正面景区名称不同外其余均相同,将3张卡片正面向下洗匀,甲先从中随机抽取一张卡片,记下景区名称后正面向下放回,洗匀后乙再从中随机抽取一张卡片,请用画树状图或列表的方法,求两人都决定去长白山的概率【答案】甲、乙两人都决定去长白山的概率为【解析】【分析】画树状图,共有9种等可能的结果,其中两人都决定去长白山的结果有1种,再由概率公式求解即可【详解】解:长白山、松花湖、净月潭依次用字母A,B,C表示,画树状图如下:共有9种等可能的结果,其中甲、乙两人都决定去长

12、白山的结果有1种,甲、乙两人都决定去长白山的概率为【点睛】此题考查的是用树状图法求概率以及随机事件等知识树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比18. 图,图均是的正方形网格,每个小正方形的顶点称为格点其中点,均在格点上请在给定的网格中按要求画四边形(1)在图中,找一格点,使以点,为顶点的四边形是轴对称图形;(2)在图中,找一格点,使以点,为顶点的四边形是中心对称图形【答案】(1)图见解析 (2)图见解析【解析】【分析】(1)以所在直线为对称轴,找出点的对称点即为点,再顺次连接点即可得;(2)根据点平移至点的方式,将点进行平

13、移即可得点,再顺次连接点即可得【小问1详解】解:如图,四边形是轴对称图形【小问2详解】解:先将点向左平移2格,再向上平移1个可得到点,则将点按照同样的平移方式可得到点,如图,平行四边形是中心对称图形【点睛】本题考查了轴对称图形与中心对称图形、平移作图,熟练掌握轴对称图形与中心对称图形的概念是解题关键四、解答题(每小题7分,共28分)19. 刘芳和李婷进行跳绳比赛已知刘芳每分钟比李婷多跳20个,刘芳跳135个所用的时间与李婷跳120个所用的时间相等求李婷每分钟跳绳的个数【答案】160个【解析】【分析】设李婷每分钟跳绳的个数为个,则刘芳每分钟跳绳的个数为个,根据“刘芳跳135个所用的时间与李婷跳1

14、20个所用的时间相等”建立方程,解方程即可得【详解】解:设李婷每分钟跳绳的个数为个,则刘芳每分钟跳绳的个数为个,由题意得:,解得,经检验,是所列分式方程的解,且符合题意,答:李婷每分钟跳绳的个数为160个【点睛】本题考查了分式方程的实际应用,正确找出等量关系,并建立方程是解题关键20. 密闭容器内有一定质量的气体,当容器的体积(单位:)变化时,气体的密度(单位:)随之变化已知密度与体积是反比例函数关系,它的图像如图所示(1)求密度关于体积的函数解析式;(2)当时,求该气体的密度【答案】(1) (2)1【解析】【分析】(1)用待定系数法即可完成;(2)把V=10值代入(1)所求得的解析式中,即可求得该气体的密度【小问1详解】设密度关于体积的函数解析式为,把点A的坐标代入上式中得:,解得:k=

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 中考

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号