括射频探测器市场分析

上传人:泓域M****机构 文档编号:349695552 上传时间:2023-04-20 格式:DOCX 页数:15 大小:25.42KB
返回 下载 相关 举报
括射频探测器市场分析_第1页
第1页 / 共15页
括射频探测器市场分析_第2页
第2页 / 共15页
括射频探测器市场分析_第3页
第3页 / 共15页
括射频探测器市场分析_第4页
第4页 / 共15页
括射频探测器市场分析_第5页
第5页 / 共15页
点击查看更多>>
资源描述

《括射频探测器市场分析》由会员分享,可在线阅读,更多相关《括射频探测器市场分析(15页珍藏版)》请在金锄头文库上搜索。

1、括射频探测器市场分析一、 低温超导材料以铌基超导材料(NbTi和Nb3Sn)为主的低温超导材料具有优良的机械加工性能和超导电性,是目前最主要的实用化超导材料。低温超导产业链主要包括上游原材料、中游超导线材、超导磁体及下游超导设备四个环节:1)在原材料环节,低温超导线材对原材料(钛Ti、铌Nb、锡Sn)有很高的要求,且工艺过程复杂,技术条件严格,由于低温超导线材行业对原材料的消耗量并不大,因此上游原材料对超导线材行业的影响并不明显,超导线材行业的发展主要取决于技术进步;2)在超导线材(NbTi、Nb3Sn超导线)生产环节中,NbTi超导线的上游还包括NbTi棒材环节,由于Nb和Ti的熔点相差较大

2、,且NbTi合金中Nb的含量较多,如果控制不好熔炼技术,易产生不熔块,导致后续细芯丝NbTi线在加工中断裂因此NbTi二元合金棒的制备非常困难,为重点技术加工环节;3)超导磁体是由超导线材绕制而成的能产生强磁场的超导线圈,并包括其运行所必要的低温恒温容器。基于超导材料的特性,超导磁体具有场强高、体积小、重量轻等特性。由于超导材料在超导状态下具有零电阻的特性,因此可以以极小的面积通过巨大的电流;4)下游行业主要为各类超导设备,随着磁共振成像仪(MRI)、磁控直拉单晶硅技术(MCZ)、核磁共振谱仪(NMR)、质子加速器、核聚变实验堆等领域的发展,未来低温超导线材的市场空间巨大。二、 超导磁体行业技

3、术水平特点超导MRI系统现已成为业界公认的高端医学影像设备中皇冠上的明珠,应用基础涉及物理、化学、数学、生物等基础学科的支撑和交叉。MRI设备的发展物理学基础是基于科学家对微观世界和磁场的研究。发展至20世纪中期,MRI被应用于化学物质的鉴定和探索,在医学领域则通过MRI来区分癌变组织和正常组织的不同特性。MRI设备的制造需要技术人员在实操和工艺层面上不断摸索和总结规律,涉及力学、低温、真空、机械、焊接、电子应用等多个工学专业技术,技术实践性强,需要在实操过程中不断试错、总结经验,才能提高制造成功率。在关键的生产流程中,培养熟练的技术工程师来进行生产,例如在射频探测器的调试环节,需要反复调试电

4、感电容的分布,降低寄生参数影响,主要依靠工程师的经验而非统一的标准方法。超导环境要求始终维持在严格的低温42K环境(约为-2688),超导线才会达到零电阻特性,电流通过时不会产生热损耗,可以毫无阻力地在导线中流动,产生超强磁场。通常通过液氦和抽真空的方法来建立低温环境,要求磁体中液氦无挥发以及高密闭性和持续制冷,防止失超现象发生,对制冷系统、磁体骨架的搭建、真空浸渍的效果和严密的焊接工艺等提出挑战。1T以上的磁场强度约为10,000高斯,地球的磁场强度约为05高斯,15T超导磁体场强约为地球磁场的3万倍。在磁体电源的作用下给超导线加以电流,从而建立预订磁场的过程称为励磁。励磁一旦成功,超导线将

5、在不消耗能量的情况下提供强大稳定均匀的磁场。励磁的难度在于高精度大功率的励磁电源以及匀场技术和绕线工艺。强磁场环境中,通电的梯度线圈因受力产生剧烈晃动,形成噪音,是绝大多数超导MRI系统的通病。为减少晃动,在磁体前后两端加入固定装置,尽量抵消掉晃动的力,从而降噪。变化的磁场在其周围的金属体内会产生感应电流,并在金属体内自行闭合,产生涡流,影响磁场均匀性。最常用解决方案就是在主磁体线圈与磁体之间增加一个屏蔽线圈,该线圈的磁场方向和梯度线圈相反,使得合成梯度为零,最终减小涡流情况出现。目前国内的大多数医学影像类超导MRI系统市场份额仍然被GPS占据。国外厂商发展早、技术完备性高、产业链布局广、产品

6、更新迭代快,具备一定的先发优势和客户黏性。国内厂商主要采购核心元部件,依赖上游核心部件厂商,在产业链中的竞争力不强,成本控制能力及议价权受限。在科研领域,超导MRI设备被国外产品垄断的现场更为突出,国内厂商缺乏自制能力,而且产品定制化要求高,更考验厂商的设计能力和服务质量。因为缺乏竞争对手,国外厂商的设备定价长期较高。国内厂商如具备核心部件自制能力,能够通过自身的技术工艺控制成本,从而获取价格竞争优势。因此,高端医疗器械的性价比是衡量竞争力的关键指标,该指标同样适用于逻辑中的科研仪器和设备。从需求端来看,该行业的客户资源主要分为两种类型:处在产业链中下游的系统集成商,由于该行业的科技属性较强、

7、壁垒较高,行业内玩家数量较少,能够获得类医疗器械注册证的企业数量有限,因此和拥有注册证的系统集成商建立良好稳固合作关系,可保证产品订单量。处在产业链需求端的终端客户,包括医院、高校和科研机构等。和优质客户建立并保持合作关系,有利于在行业内建立市场知名度,有利于拓展新的客户资源。三、 加速器以加速器为代表的大科学工程自上世纪80年代以来一直是高技术发展水平和综合国力发展的象征,以超导磁体为核心的加速器系统是相关装置的核心。高能质子加速器是超导磁体在大科学工程中应用的一个重要的领域,其包括超导直线加速器、超导回旋加速器、超导同步加速器等设备。超导材料是加速器磁体的重要组成部分,超导磁体的应用可以在

8、很小的激磁功率下产生强大的约束磁场,从而大幅缩减加速器的尺寸,降低加速器功率消耗,从而优化超导加速器的经济效益。随着加速器市场需求的增加,超导线材和超导磁体的市场需求也将变得更为明确。超导材料产业链上游为矿资源,如钇、钡、铋、锶、硼等金属;中游是超导材料,如YBCO、BSCCO和MgB2等;下游是超导应用产品,如超导电缆、超导限流器、超导滤波、超导储能以及超导发电机等。超导材料产业链上游为原材料,如铌、钛、钇、钡、铋、锶、硼等金属材料,中游为超导材料相关公司,如江苏中天科技、特变电工、西部超导、青岛汉缆、北京英纳超导等,下游为超导设备应用。四、 产业化的突进根据超导材料的基本特性,其不仅在临界

9、温度下具有零电阻特性,而且在一定的条件下还具备完全抗磁性和宏观量子效应等常规导体所不具备的特性,这些性质使超导体能够实现大电流传输、获得强磁场、实现磁悬浮、检测微弱磁场信号等多种应用,因此其被广泛应用在电子通信、电力能源、交通运输、国防、医疗器械等诸多领域。由于超导材料和技术涉及的领域之,发达国家不惜投入巨资开展前期研究和产业化应用实验。我国在产业政策方面也对超导材料的发展方向做出了相关支持,历年出台的各类新材料行业发展政策推动了超导材料的发展和革新。中国制造2025将超导材料列为前沿颠覆性新材料中需重点发展的项目,十三五国家战略性新兴产业发展规划指出应积极参与国际热核聚变实验堆计划(ITER

10、),不断完善全超导托卡马克核聚变实验装置等国家重大科技基础设施。由于超导材料的应用不仅能提高电力生产、传输等领域的工作效率,也能对资源的节约起到举足轻重的作用,在这个能源紧缺的时代,超导材料科研技术和生产技术的飞跃势必带来新一轮的能源革命。目前全球超导市场以低温超导为主,国内低温超导材料及应用占超导市场总量的90%以上,高温超导材料仍处于商业化初期。经过数十年的潜心发展,我国已成为国际超导材料和应用技术研发的中坚力量,目前已基本掌握了各种实用化超导材料的制备技术,实现了低温超导材料的商业化生产。低温超导方面,尽管我国在商业化、超导强电和弱电应用技术等方面已基本达到国际先进水平,但由于产学研用结

11、合不紧密、创新链和产业链不完整,导致我国在高端医疗设备、分析仪器、科研装备等超导技术应用方面存在明显差距,相关材料和装备仍然依赖进口。未来低温超导材料产业需着力提升整体研发水平,提高自主创新能力,向世界领先水平迈进。高温超导方面,我国在高温超导材料基础研究和工艺研究方面均已实现一定进展,材料性能已基本满足应用需求,目前正逐渐开始商业化,但和国际水平仍存在着明显的差距,未来高温超导料商业化的核心仍需围绕低成本、大规模批量制备技术。以下章节将对低温超导和高温超导材料各自的产业链、下游应用及发展前景作出梳理和展望。五、 超导体的发展历史回顾超导体的发展历史,超导研究对象逐步由简单金属到合金,再到复杂

12、的化合物、有机物,超导临界温度也在过去的一个多世纪里逐渐提升。目前发现的超导材料主要包括:各类金属及合金超导体、铜氧化物超导体、重费米子超导体、有机超导体、铁基超导体及其他氧化物超导体等。下图展示了自超导现象问世以来发现的一些典型的超导体及其晶体结构,横轴为发现的年代,纵轴为超导临界温度Tc。寻找能大规模应用的室温超导体是当今超导研究人员的心之所向。超导体的应用解决了输电过程中造成的热损耗,具备着常规金属材料无法企及的性能。由于超导体往往需要在非常低的环境温度中应用(低于其超导临界温度),而低温环境往往需要依赖于液氦或其他设备来维持,这极大地增加了超导材料的应用和维护成本,导致具备如此颠覆性的

13、材料无法在低成本下被大规模应用。因此,寻找具备更高临界温度的超导体是解决超导材料应用的关键,而研发出室温超导体成为了超导领域研发人员的不懈追求。2020年,迪亚斯在实验室将氢、碳和硫元素,在金刚石压腔中通过光化学合成简单的碳质硫氢化物(CSH),并将其超导临界温度提升至15,这是人类第一次观察到室温超导体,具有里程碑式的意义。但在金刚石压腔中观察到的超导现象被重重极端条件所限制:1)该现象的环境压力为2670亿帕,相当于标准胎压的100万倍;2)产生超导现象的材料数量极其微量,并无法产生实际的应用。因此,下一个科研目标则是争取找到在较低压力下制造室温超导体的方法,以实现大批量生产。若常温超导能

14、够得到规模化应用,必将带来一场全新的能源革命,人类将步入崭新的超导时代。六、 超导体更高的临界温度按照超导体的临界温度,可以将超导体分为低温超导和高温超导材料:Tc25K的超导材料称为C温超导材料,目前已实现商业化的包括NbTi(铌钛,Tc=95K)和Nb3Sn(铌三锡,Tc=18k)。由于NbTi和Nb3Sn具有优良的机械加工性能和成本优势,其制备技术与工艺已经相当成熟。目前低温超导的下游应用主要包括加速器磁体、核聚变工程用超导磁体、核磁共振磁体、通用超导磁体等,基于低温超导材料的应用装置一般工作在液氦温度(约42K)。在相当长的时期内,低温超导材料仍将是最主要的超导产业支柱性材料;Tc25

15、K的超导材料为高温超导材料,具备实用价值的主要包括铋系(例如Bi-Sr-Ca-Cu-O,BSCCO,Tc=110K)、钇系(例如Y-Ba-Cu-O,YBCO,Tc=92K)和MgB2超导材料(Tc=39K)、铁基超导材料等。其中铋系和钇系高温超导材料于氧化物陶瓷,在制造工艺上须克服加工脆性、氧含量的精确控制及与基体反应等问题,因此生产成本较高,目前尚处于商业化初期阶段。目前高温超导的下游终端应用主要包括超导电缆、超导电机、超导变压器、超导滤器等,基于高温超导材料的应用装置一般工作在液氢温度(约20K)至液氮温度(约77K)之间。自超导现象被发现后的75年时间里,超导临界温度的提升进程十分缓慢,

16、超导临界转变温度仅仅被提高到232K左右,且基本都由单元素金属和多元合金实现,这段时间内所发现的超导体均为低温超导体。直到人们对铜氧化物超导体和铁基超导体的科研进展实现实质性突破,高温超导体才得以开启高速发展的征程。1986年,瑞士科学家缪勒和柏诺兹在研究氧化物导电陶瓷材料LaBaCuO时发现其在30K以下具备超导迹象。随后,多国科学家争相对氧化物高温超导体进行研究,一举打破了氧化物陶瓷材料只能是绝缘体的传统观念,超导材料的Tc自1986年开始获得了大幅提升。铁基超导体研究的突破口则发生在2008年,日本东京工业大学的科学家细野秀雄教授的团队发现掺杂氟元素的LaFeAsO材料中存在26K临界温度的超导电性,这一发现掀起了铁基高温超导体的研究热潮。得益于经验的积累和稀土资源优势,中国科学家在得知消息的第一时间里认识到了该系统的重要性,并迅速合成了该类材料以开展物性研究。随后,中国团队采用稀土元素替代和高压合成方法获得了一系列的高质量超导体样品,并在常

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业/管理/HR > 经营企划

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号