信号链芯片行业分析

上传人:刘****2 文档编号:348105589 上传时间:2023-03-29 格式:DOCX 页数:29 大小:32.85KB
返回 下载 相关 举报
信号链芯片行业分析_第1页
第1页 / 共29页
信号链芯片行业分析_第2页
第2页 / 共29页
信号链芯片行业分析_第3页
第3页 / 共29页
信号链芯片行业分析_第4页
第4页 / 共29页
信号链芯片行业分析_第5页
第5页 / 共29页
点击查看更多>>
资源描述

《信号链芯片行业分析》由会员分享,可在线阅读,更多相关《信号链芯片行业分析(29页珍藏版)》请在金锄头文库上搜索。

1、信号链芯片行业分析一、 新能源汽车快速渗透,模拟芯片价值量提升汽车电动化,网联化和智能化提速,车用IC需求快速增加。随着汽车电动化进程加快、汽车互联性增加、自动驾驶逐步落地,汽车半导体从MCU、功率半导体器件(IGBT、MOSFET)、各种传感器等,拓展到包括ADAS先进驾驶辅助系统、COMS图像传感器、激光雷达、MEMS等更多方面。汽车对芯片可靠性、安全性、一致性要求高,需要通过AECQ100、ISO26262和IATF16949等认证。汽车电动化,网联化和智能化催生模拟芯片新需求。模拟芯片应用于几乎所有汽车电子部件,除了涉及传统汽车电子如车载娱乐、仪表盘、车身电子及LED电源管理等领域,还

2、广泛应用于新能源汽车的动力系统、智能汽车的智能座舱系统和自动驾驶系统。动力总成部分主要包括了电机控制器、OBC、DC/DC、BMS等。根据iHS和Melexis,在A到E的各个级别汽车中,电动化都大幅增加单车模拟芯片需求量,比如:A级燃油车模拟芯片用量约100颗,而A级纯电动车需求量高达350颗以上;在B级车中,模拟芯片单车用量从燃油车的160颗提升至纯电动车的近400颗,而纯电动E级车用量超过650颗。新能源汽车高增长助推车用模拟芯片高价值产品。全球新能源汽车市场渗透率从2018年2%上升至2021年8%,销量从199万辆上升至644万辆,年复合增长率48%。根据ICInsights统计,2

3、022年全球汽车专用模拟芯片市场规模将增长17%至138亿美元,是增速最快的模拟芯片下游市场。汽车三化赋能模拟IC电源管理市场。得益于汽车电动化、智能化、网联化,越来越多的传感器、功率半导体、电机等电子零部件装载在汽车内部,需要更多的电源管理IC进行电流电压的转换,从而推动电源管理芯片增长。特别地,随着新能源汽车的高增长,车用BMIC需求迎来高增长。根据Frost&Sullivan统计,全球新能源汽车BMS市场规模从2016年的5亿美元增长到2020年的14亿美元,复合年均增长率为33%。根据半导体产业纵横预测,全球锂电池BMIC市场规模将从2021年的43亿美元增加至2026年的80亿美元,

4、CAGR为14%,其中汽车类CAGR超过40%。汽车电池由数百、甚至多达数千节电芯串联和并联构成,电芯、模块间会出现电量不平衡,大量的电芯串联要求电芯之间的电量一致,因此需要采用电池监测芯片对每个电芯进行电压、电流检测。同时,电动汽车的充放电过程也需要保护芯片来防止部分电芯的过充或过放。车规级BMIC完整解决方案的供应商主要有ADI(AFE主要来自于收购的Maxim和Linear产品线)、TI、英飞凌、NXP、瑞萨(AFE主要来自于收购的Intersil产品线)、ST和安森美等。其中汽车BMS的AFE芯片的技术难度在于采样通道数、内部ADC数量等。此外,由于AFE芯片的需求与电芯数量成正比,电

5、芯数量与电压成正比,800V电压平台对AFE的需求相比400V平台翻倍增长。400V系统电动汽车大约需要8个AFE芯片和1个隔离通讯芯片,而800V系统约需要16个AFE芯片和1个隔离通讯芯片。车用信号链芯片为车联万物、信息交互提供支持。车用信号链芯片发挥多种用途。一类是射频IC,为汽车提供无线通信。汽车四大无线通讯方案:蜂窝网络系统、WLAN、全球导航卫星系统GNSS和V2X车联网,都需要多个射频IC和射频模块实现,大多数此类元件都包含在TCU中。另一类是为传感器和处理器之架起桥梁的特定模拟ASSP/ASIC。外界真实信号被传感器感知,得到的模拟信号经过放大器、模数转换器最终传递给MCU处理

6、。汽车的电动化,智能化拉动了视频传输等接口技术的升级、芯片数量和芯片价值量的提升。随着汽车新车型配置,智能座舱、高级辅助驾驶的需求越来越强烈,单车对高清屏以及高清摄像头的使用越来越多。根据电子工程专辑显示,高清视频传输芯片的市场规模将以35%-40%以上的年增长率快速扩容。车载摄像头预计2025年在全球的市场需求量会超过3亿台以上,视频传输芯片的市场规模也将达到人民币90亿元,这将进一步扩大车载模拟接口芯片的使用量。此外,视频数据传输HDMI接口不断迭代升级,分辨率不断提高,最新的21接口可以支持到8K-60帧分辨率,这进一步拉动了相关模拟接口芯片的价值量。5G广泛应用推动通信领域模拟芯片迭代

7、升级。无论是智能手机还是基站等基础设施,一套完整的5G通信系统包含了从信号链到电源链的多种模拟芯片的迭代升级。模拟芯片在通讯领域应用于宽带固定线路接入、数据通讯模块、有线网络和无线基础设施等,其中无线通信估计占2022年通信模拟芯片领域销售额的91%。无线通信模块通常包括天线、射频前端、射频收发、基带。其中,射频前端模块是移动终端通信的核心组件。智能手机由模拟IC、数字IC、OSD器件、非半导体器件组成。其中模拟IC主要可分为射频器件和电源管理装置。射频器件是处理无线电信号的核心装置,包括射频前端、射频收发、射频开关、射频PA等。电源管理装置包括快充芯片、无线充电芯片等。手机功能升级主要从多个

8、层面驱动手机模拟IC市场需求。智能手机中按照功能划分,模拟芯片主要用于DC/DC电源、输入电源保护、音频/震动、I/O连接等功能区域。首先,5G等通信技术升级直接导致移动终端需要增加可覆盖智能手机新增频段的射频器件;第二,智能手机功能复杂度不断提升,导致手机各功能模块对移动终端电源管理芯片的性能(噪音水平和功耗等)和数量提出了要求;第三,手机光学升级、快充创新等进一步带动驱动、快充等芯片的价值量;第四,智能手机行业需求的复苏以及5G手机渗透率的提升有望拉动模拟IC整体需求量的抬升。5G技术直接促进手机模拟IC和射频器件价值量提升。5G技术升级,为了覆盖5G新增频段,移动智能终端需要配套的射频前

9、端器件。5G通过拓宽带宽、增加通路数量提高数据传输速度,与4G的低频电路不同,高频电路需要从材料到器件,从基带芯片到整个射频电路进行重新设计,复杂度提升的同时,也需要增加射频开关、滤波器、放大器的数量以满足对不同频段信号接收、滤除、放大、发射的需求。5G核心技术为基站射频芯片带来机会,电源管理IC用量随之增加。5G基站的三个功能实体分别为CU、DU、AAU。DU和AU是原基带单元BBU按处理实时和非实时任务进行拆分。AAU(有源天线单元)是射频单元及无源天线的合并。5G基站采用大规模天线阵列、载波聚合和新频谱,对PA性能、独立射频通道数量、天线开关数、滤波器数量和PA开关数量等需求增加。例如,

10、4G基站对应的射频PA需求量为12个,而5G基站对应的PA需求量高达192个。由于5G基站有更多的天线、射频组件和更高频率的毫米波,基站功率约为4G基站的3-4倍,电源管理IC的用量随之增加,宏基站需要约120颗电源管理IC、小基站需要约20颗。万物互联趋势下,消费级和工业级物联网终端的广泛应用推升模拟芯片需求。大规模物联网业务mMTC是5G三大应用场景之一,以低功耗和海量接入为特点,对应无线供电芯片、低功耗供电芯片和5G通讯芯片等,同时物联网终端还涉及到车联网各类传感器和智能家居微控制器、传感器等模拟芯片应用。根据GSMA数据,2021年全球物联网设备联网数量为148亿个,同比增长16%,其

11、中工业级设备占比为47%,预计2025年全球物联网设备联网数量上升至252亿个,工业级设备占比55%。众多物联网终端应用推升模拟芯片用量。由于物联网主要是物理世界的终端设备互联,压力、亮度、距离等物理参数是信息互联的重要手段,智能家居、智慧城市、无人机等物联网下游的快速发展,成为了模拟芯片的重要推动力。如:扫地机器人的模拟芯片包括运算放大器、数据转换器(ADC)、线性稳压器(LDO)、模拟开关等,以实现扫地机器人的红外障碍感应、TOF探测、LDS激光测距、超声传感等功能。国内模拟IC厂商正处于快速成长阶段,模拟IC国产化率进一步提升的内部和外部条件均趋于成熟。首先,国内代工厂制程和工艺满足要求

12、,技术日臻成熟,可以与模拟IC厂商进行协同;第二,国际模拟大厂向工业和车载领域倾斜,减少对消费等领域的资源支持,给国产厂商差异化竞争创造了机遇;第三,国内模拟IC厂商逐步突破产品种类和质量,并持续发力产品导入和客户验证。国内模拟IC厂商迎来了内部和外部的双重历史机遇,在产品、技术、客户、市场份额等方面有望加速突破,推动模拟芯片国产化进程。中国是全球最大的半导体和模拟芯片市场。IDC数据显示,2020年中国大陆占全球模拟芯片市场的比例达到36%,超过欧美及其他地区。国际模拟芯片大厂如德州仪器、亚德诺等收入来源市场中,中国收入占比有明显提升的趋势。以亚德诺为例,2015年至2021年,中国地区的收

13、入占比从15%提升至22%,于2020年达峰值24%。我国的模拟芯片自给率较低,未来发展潜力大。前瞻产业研究院数据显示,2021年中国模拟芯片的自给率仅为12%左右,较2017年上升了6个百分点,总体呈上升趋势。就模拟芯片业务而言,2021年德州仪器营业总额为1247亿元(美元兑人民币汇率取68),国内模拟芯片前十企业营收与之相差较大。然而,目前国际IC厂商较为分散的经营格局为本土模拟集成电路的发展带来了机遇,随着芯片的加速,未来我国模拟芯片将有较大的成长空间,自给率进一步提升。欧美厂商占据绝大多数市场份额,行业集中度较低。根据Frost&Sullivan的统计数据,2019年全球前十模拟IC

14、供应商基本被欧美国家主导,共占据67%左右的市场份额。德州仪器在模拟芯片中表现强劲,2018-2019年间占据19%的市场份额,第二梯队亚德诺、英飞凌、意法半导体、思佳讯也纷纷超过了5%。模拟芯片整体呈现出较为分散的发展布局,剩余IC厂商对应市场占有率不超过1%,行业集中度较低。以电源管理芯片为例,ICInsights数据显示,2020年全球供应商前五名依次为德州仪器、高通、亚德诺、美信、英飞凌,共占据71%的市场份额。模拟芯片竞争格局稳定,CR5、CR10市场份额有所提升。据ICInsights统计,2017到2020年全球前十大模拟厂商变动不大,仅Qorvo在2021年跻身前十。模拟芯片在

15、德州仪器、亚德诺、思佳讯为代表的欧美厂商的带领下,逐渐形成了较为稳定的市场竞争格局。五年间,CR5和CR10市场份额各提升了近10%,市场集中度有所提升。二、 集成电路行业概况(一)全球集成电路行业整体发展概况集成电路行业作为信息产业的基础,现已逐渐发展成为衡量一个国家或地区综合竞争力的重要标志,其发展水平直接反映了国家技术科研实力水平的高低。应用领域方面,集成电路广泛应用于信息、通信、消费电子、计算机、工业自动化等各个领域。5G通讯、人工智能、云计算、物联网、大数据、可穿戴设备等新业态的快速发展,为全球集成电路产业提供了巨大的市场需求和广阔的发展空间。如今,集成电路的应用已经渗透到现代生活和

16、未来科技的各个方面,成为日常生产生活的重要组成部分。至今,全球集成电路产业的发展经历了四个阶段。第一阶段(1947至1967年)是集成电路产业的孕育期,该阶段产品线单一,专业化分工水平较低,美国集成电路厂商开始把制造业向日本和欧洲转移;第二阶段(1968至1981年)是集成电路产业的形成期,1968年英特尔成立,开辟了集成电路历史的新纪元,该阶段专业化分工水平逐步提高,以IDM为框架的集成电路产业初步形成;第三阶段(1982至1998年)是集成电路产业的成长期,1987年台积电成立,开创了集成电路制造的代工模式(Foundry),1990年后无晶圆模式(Fabless)逐步被世界认可,产业专业分工与合作体系逐步形成;第四阶段(1999年至今)是集成电路产业的拓展期,发展运作模式不断地调整,产业结构向高度专业化发展,开始形成了设计业、制造业、封装业、测试业独立成行的局面。集成电路行业发展至今经历了70余年,主要产业集中在美国、欧洲、日本、韩国和中国台湾。近年来,全球集成电路产业快

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 解决方案

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号