稳妥探索氢能示范应用行动方案

举报
资源描述
稳妥探索氢能示范应用行动方案 一、 稳妥探索氢能示范应用 1、重点引导电力领域试点应用氢能 实施氢企燎原计划,鼓励有实力的能源企业在赣搭建氢能产业投资平台,重点开展氢能在电力领域应用试点和投资,积极推广试点成效,促成赣鄱大地氢能燎原之势。重点促进可再生能源与氢能相互支撑、高效发展相关应用。结合新能源规模化发展和新型电力系统建设,鼓励开展氢电耦合和氢储能等示范应用,发挥氢能在促进可再生能源消纳、电网调峰等方面的作用。开展新能源+氢能专项试点,引导建设一批与风电、光伏发电配套的氢电耦合综合利用示范项目,培育一批具有相关产品研发、设计、生产和工程建设能力的本土骨干企业。鼓励在通信基站、数据中心、铁路通信站点、电网变电站等基础设施场所使用氢能作为应急备用电源,提升设备供电可靠性。因地制宜布局氢燃料电池分布式发电和热电联供设施,推动在有需求、有条件的区域开展冷、热、电、氢多能融合互补利用示范,提升终端能源效率和低碳化水平。 2、有序推进交通领域示范应用氢能 结合加氢网络建设和氢燃料电池技术发展,以对缩短燃料装填时间、延长终端续航能力要求高的应用场景为重点,有序开展氢燃料电池车辆示范应用。鼓励新增城市公交、环卫车和中重型货运车辆使用氢能。鼓励有条件的风景旅游区、会展中心等使用氢能接驳客车,探索在工矿区、港口、物流园、重点产业区示范应用其他类型的氢动力作业车辆,支持以氢能和其他清洁能源利用为重点打造氢能示范小镇、产业园等。支持氢燃料电池和氢燃料混合动力在轨道交通、船舶领域应用。鼓励依托现有航空产业基础开展氢动力在航空器、无人机领域示范应用。支持吉安、九江、南昌等城市结合本地及周边区域氢能产业建设情况,与省内外有关城市合作申报国家氢燃料电池汽车应用示范城市群。 3、逐步探索氢能工业领域替代应用 在经济性可承受的基础上,以化工、冶金、炼化等高耗能行业为重点,探索利用氢能替代化石能源提供高品质热源,有效扩大工业领域能源消费清洁替代,实现产业再电气化和深度脱碳。鼓励基于可再生能源和绿氢的零碳新工业零碳产业园建设。支持现有用氢较为集中的石化、化工项目有序实施CCS蓝氢和可再生能源绿氢替代,支持合成氨、合成甲醇等传统化工企业新增电解水制氢装置或新建绿氢化工项目,实现绿色化工示范。密切跟进国内氢冶炼工艺发展,鼓励开展以氢作为还原剂的冶金技术研发应用,依托江西钢铁产业基础进行高炉改造,探索建设气基还原工厂进行氢能炼钢,降低传统冶金工艺中碳还原导致的二氧化碳排放。 二、 氢能源的缺点 (一)氢能源价格昂贵 电解和蒸汽重整是氢提取的两个主要过程,非常昂贵。这是其在全球范围内未得到广泛使用的真正原因。如今,氢能主要用于为大多数混合动力汽车提供动力。需要大量的研究和创新才能发现廉价和可持续的方式来利用这种形式的能源。在此之前,氢能将仅保留给富人。 (二)储存并发症 氯性质之一是它具有较低的密度。实际上,它的密度比汽油小得多。这意味着必须将其压缩为液态,并在较低的温度下以相同的方式存储,以确保其作为能源的有效性和效率。该原因也解释了为什么必须始终在高压下存储和运输氢气,这就是为什么运输和普遍使用远非可行的原因。 (三)它不是最安全的能源 氢的功率绝对不应被低估。尽管汽油比氢危险一些,但氢是高度易燃和易挥发的物质,经常引起人们对其潜在危险的关注。与气体相比,氢气缺乏气味,这使得几乎不可能进行泄漏检测。要检测泄漏,必须安装传感器。 (四)棘手的四处走动 由于氢的轻巧,运输氢是一项艰巨的任务。石油可以安全运输,因为它大部分是通过管道推动的。煤炭可以方便地用自卸车运输。当考虑大量运输氢时,氢也带来了挑战,这就是为什么氢主要只以小批量运输的原因。 (五)生成氢能取决于化石燃料 氢能是可再生的,对环境的影响最小,但是将其与氧气分离需要其他不可再生的资源,例如煤,石油和天然气。生产氢燃料仍需要化石燃料。 三、 制氢技术分析 尽管氢是自然界最丰富的元素之,但是天然的氢在地面上却很少有,所以只能依靠人工制取。通常制氢的途径有:从丰富的水中分解氢:从大量的碳氢化合物中提取:从广泛的生物资源中制取氢:或利用微生物去生产氢等等。各种制氢技术均可掌握。但是作为能源使用,特别是普通的民用燃料,首先要求产氢量大,同时要求造价较低,即经济上具有可行性,这是今后制氢技术的选择标准。就长远和宏观而言,氢的主要来源是水,以水裂解制氢应是当代高技术的主攻方向。以下简述几种制氢方法。 (一)化石燃料制氢 这是目前大量化工用氢的生产方法,如化肥生产的造气,即以煤在气化炉中燃烧,通过水蒸气还原反应,获得氢气。同样,石油、天然气或生物质燃料,均可用类似的方法制取氢。但是,这样的造气效率不高,需要消耗大量能源,并对环境污染较大。以能源换燃料,是得不偿失的。鉴于化石能源的有限性,应尽可能满足有机原料的需要,而不能作为产生氢能的依靠。 (二)电解水制氢 人们最早的制氢方法就从电解水开始,至今它仍然是工业化制氢的重要方法。尽管改进型的电解槽已把电耗压到了相当低,但还是工业生产中的电老虎。而且电本属二次能源,除了水电,电是用大量燃料换来的,其中经过热能、机械能、电能的转换,本来能耗就不小,再经电解水制成氢,总的能源效率实在太低,以此将氢作能源,无疑也是不可取的。不过现在正继续改进电解水制氢的工艺,并使用丰水期的水电,或利用风能、太阳能等可再生能源来电解水制氢作为这些新能源的贮存手段,自当别论,不能不说是有可取之处。 (三)硫化氢制氢 在石油炼制、煤和天然气脱硫过程中都有硫化氢产出,自然界也有硫化氢矿藏,或伴随地热等的开采也会产生硫化氢。国外已有硫化氧分解方法,包括气相分解法(干法)和溶液分解法(湿法),能同时获得硫磺和氢气。尽管这种工艺需要一定的高温(约600C)和适当的催化剂,或经过光照等措施,但是能化害为利,综合利用,将不失为一种制氢的好方法。 (四)光解海水制氢 80年代末,国际上出现了光解海水制氢的方法,以激光诱导MOCVD制膜技术有所突破,制成新型的金属/半导体/金属氧化物光电化学膜,用此种膜作为海水电解的隔膜,能使海水分离制得氢和氧,其电耗低,转换效率已达10%左右,此方法已引起各国科学家的关注。 (五)光化制氢 利用入射光的能量使水的分子通过分解或水化合物的分子通过合成产生出氢气。在太阳的光谱中,紫外光具有分解水的能量,若选择适当的催化剂,可提高制氨效率。因此在太阳能利用的高技术研究中光化制氢将作为重点。,有的还可将光电、光化转换同时进行,以获得直流电和氢、氧。目前,尽管尚处于实验室研究阶段,但对开辟制氢途径具有很大的吸引力。 (六)生物制氢技术 利用植物的光合作用制氢和微生物分解有机物制氢。从常见的植物光合作用吸收二氧化碳制造氧的过程,不难理解光合作用的深化。目前,光合作用在多数植物中效率非常低,通常均低于千分之五,这与自然光谱的吸收率有关。在今后的生物工程研究中,提高植物的光合作用效率是突出任务之一,其中除制氧机制外,氢的转换也在其中。至于微生物制氢,自然界已发现有类似甲烷菌的制氢菌,只是其菌种繁育不如甲烷菌那样简单。若能建立合适的菌种群落,制造氢气就会像制造沼气一样。 (七)热分解水制氢 当水直接加热到很高温度时,例如3000C以上,部分水或水蒸气可以离解为氢和氧。但这种过程非常复杂,远非设想那样简单。其中突出的技术问题是高温和高压。较有希望的是利用太阳能聚焦或核反应的热能。关于核裂变的热能分解水制氢已有各种设想方案至今均未实现。人们更寄希望于今后通过核聚变产生的热能制氢。在美国能源部主持下有劳伦斯一利弗莫尔实验室、通用原子能公司和华盛顿大学等单位参加的核能热化学制氢研究项目已进行了多年,主要是以一种串联磁镜式核聚变堆为热源,用硫碘热化学循环的方法制取氢。此外,原苏联也制订过通过托卡马克核聚变堆进行高温蒸汽电解的制氢方案。所有这些制氢方法,都涉及一系列高技术,但人们仍有信心迎接氢能世界的出现。 四、 氢能的主要应用领域 (一)在电力方面 氢能作为多功能载体,可以实现可再生能源体系的整合,不仅用于清洁发电,还能平衡电力需求和可再生能源之间的波动。在可再生能源能力不足或需求高峰时期,氢气成为清洁能源的来源,在发电中起到脱碳的作用。 (二)在供暖方面 氢气可以与天然气混合使用,所以氢能是未来少数能与天然气竞争的低碳能源之一。通过与天然气混合(低百分比的氢气可以安全地混合到现有的天然气网络中),无需对原有的基础设备进行多少调整,就能提供灵活连续的热能电能,氢能源进而有望取代传统化石燃料。 (三)在航空领域 航空业每年排放9亿吨以上的二氧化碳,氢能是发展低碳航空的主要途径。氢能在飞机上的应用有以下四种途径:直接在燃气轮机中燃烧,通过燃料电池用于推进或非推进能源系统,燃料电池和燃气轮机的混合动力组合,氢基合成燃料。 (四)建筑供热 在现有天然气管道中掺杂氢气,满足建筑领域供热需求,同时减少碳排放量。近中期实施中低比例掺氢,在氢气浓度(体积最高为10-20%)相对较低的情况下,无需对基础设施和终端应用进行重大改变,投资成本较低,若混合比例为5%,每年将减少约20万吨二氧化碳排放。 (五)氢能治金 目前,国内多个大型钢企在推进氢炼钢生产线改造和建设,就已有高炉富氢工艺对现有高炉进行改造,或者建设气基还原工厂,进行氢能炼钢,在为下游提供钢铁产品的同时实现碳减排。预计2060年,氢冶金粗钢产量将达4.36亿吨,其中采用富氢高炉工艺粗钢产量为2.26亿吨,气基竖炉工艺粗钢产量为2.1亿吨,生铁产量将达3.44亿吨,其中富氢高炉生铁产量为1.97亿吨,气基竖炉工艺生铁产量为1.47亿吨。 五、 氢能的发展前景 氢气纯化技术方面,美国与日本立足本国能源结构和技术优势,分别聚焦小型天然气重整制氢场景与氨分解重整制氢、有机液体解析氢气场景,开展燃料电池车用氢气纯化技术研究,包括高效小型变压吸附技术、有机膜分离、无机膜分离和全属膜分离技术。我国的氢气来源广泛,尤其是副产气杂质种类多且含量分布宽,单一纯化技术路线难以满足实际需求。尤其在燃料电池车用氢气纯化领域,我国起步较晚,缺乏系统性研究。氢储存技术方面,目前我国对储氢材料的研究比较活跃,研究内容涉及到了高压储氢、碳纳米管储氢、新型合金储氢、有机化合物储氢、碳凝胶储氢、玻璃微球储氢、氢浆储氢、层状化合物储氢等当前国际氢储存技术研发的主要方面,并在金属氢化物储氢、碳纳米管储氢、复杂化合物储氢等方面具有优势。 加强氢燃料电池技术和复燃料电池汽车以及相关基础设施的研发。发展复经济的一个重要方面是发展氢能交通运输体系和氢能基础设施建设。在氢燃料电池方面,我国可重点发展:大功率质子交换膜燃料电池技术、中低温固体氧化物燃料电池技术、基于燃料电池的系统集成技术、质子交换膜技术、电催化剂技术、先进的膜电极组件技术、无铂催化剂技术等。 六、 氢能产业发展发展目标 当前到2025年,全省氢能产业制度政策环境逐步完善。氢能产业发展基础日益夯实,产业发展跟进战略取得积极成效。氢能技术研发领军人才及专业化团队加快积聚,产业创新能力逐步提高。可再生能源制氢量达到1000吨/年,成为新增氢能消费和新增可再生能源消纳的重要组成部分。氢能应用试点、示范项目有序多元化增加,全省燃料电池车辆保有量约500辆,投运一批氢动力船舶,累计建成加氢站10座。氢能在钢铁、有色、合成氨等工业领域示范项目扎实开展。燃料电池发动机产能进一步扩大,燃料电池应用场景进一步丰富。全省氢能产业总产值规模突破300亿元。 2026年到2030年,基本掌握氢能产业核心技术和关键设备制造工艺,产业链基本完备,区域集聚、上下游协同的产业体系逐步成形。产业发展主要特征与国内先进水平差距快速缩小,部分领域比较优势初步显现,多种清洁制氢路线齐头并进发展,电-氢及氢-电系统综合能效显著提高,燃料电池分布式发电、氢储能、氢冶炼、绿氨等示范应用广泛开展,氢能在交通、工业等领域再电气化和深度减碳进程中发挥重要作用,有力支撑碳达峰目标实现。 2031
展开阅读全文
温馨提示:
金锄头文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
相关搜索

当前位置:首页 > 办公文档 > 解决方案


电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号