金属晶格结构PPT课件

上传人:嘀嘀 文档编号:264397439 上传时间:2022-03-11 格式:PPT 页数:52 大小:2.09MB
返回 下载 相关 举报
金属晶格结构PPT课件_第1页
第1页 / 共52页
金属晶格结构PPT课件_第2页
第2页 / 共52页
金属晶格结构PPT课件_第3页
第3页 / 共52页
金属晶格结构PPT课件_第4页
第4页 / 共52页
金属晶格结构PPT课件_第5页
第5页 / 共52页
点击查看更多>>
资源描述

《金属晶格结构PPT课件》由会员分享,可在线阅读,更多相关《金属晶格结构PPT课件(52页珍藏版)》请在金锄头文库上搜索。

1、上一页下一页第一节 纯金属的晶体结构 一、基本知识 晶体里面的原子(或)离子都是在它的平衡位置上不停振动着,但在讨论晶体结构时可以假设它们是一些静止不动的小球。各种晶体结构就可以看成是这些小球按一些的几何方式紧密排列堆积而成的。图2-1a是简单的立方原子排列示意图。上一页下一页(一)基本概念1.晶格:晶体结构的“小球”模型虽然很直观,但仍然不便与表诉晶体内部原子排列顺序规率的细节。我们可以把原子看成是一个几何质点,把原子 之间的相互作用假想为几何直线,这样一来晶体的结构就可以直接用几何学来讨论了。这种用于描述原子在晶体中排列的三维空间几何点阵为晶格。图2-1b是简单立方晶格的的示意图。晶格中直

2、线的交点称为结点。在运用晶格模型来讨论晶体结构时,结点可以代表一个原子(或离子),也可以代表一个分子或原子团的中心。上一页下一页(一)基本概念2 晶胞:晶体中原子排列规律具有明显的周期变化。因此在晶格中就存在一个能够代表晶格特征的最小几何单元,称之为晶胞。图2-1c是一个简单的晶胞示意图。晶胞在空间的重复排列就构成整个晶格。因此,晶胞的特征就可以反映出晶格和晶体的特征。3 晶格参数与晶格常数:在晶体学中,用来描述晶胞大小有形状的几何参数称为晶格参数。包括晶胞的三个棱边的长度a,,b,c和三个棱边夹角。,共六个参数。其中决定晶胞大小的三个棱长又称为晶格常数。图2-1c上一页下一页(二)金属中常见

3、的晶格3 密排六方晶格:密排六方晶格属于六方角系。示意见图2-4。晶格参数a=b!=c;=;=120。每个六方晶胞中有六个原子,即1/612+1/22+3=6个。属此晶格的金属有:镁镁、锌锌、铍铍、钛钛、镉镉等。 1.体心立方体晶格:体心立方体晶格属于立方晶系。示意图见图2-2。晶格的参数为a=b=c;=90立方体八角上个有一个原子,体心处有一个原子。每个体心立方体晶胞中的原子个数为1/88+1=2个。 属此晶格的金属有:铬、钨、钼、钒、铁、钛、铌等2.面心立方体晶格:面心立方体晶格也属于立方晶系。示意见图2-3。晶格参数为a=b=c;=90。在晶胞的八个角上个又一个原子每个面心立方体晶胞个有

4、四个原子,即1/88+1/26=4个。属此晶格的金属有:铁、铝、铜、镍、金、银、铂、铑、铅等上一页下一页(三)晶格的致密度晶格的致密度定义是:每个晶胞中原子所占的总体积与晶胞的体积之比。是用来表示晶体中原子排列的紧密程度经过计算可知:体心立方体的致密度为0.68 ;面心立方体和密排六方晶格的致密度都是0.74。上一页下一页二 纯金属的实际晶体结构(一)晶粒和亚晶粒 在金属体中,凡是晶格位向基本一致的区域,并有边界与邻区分开就称之为一个晶粒。在显微镜下可以看到这些晶粒,其外形成不规则状。它们是些不规则的外形多面体,见图2-8。相邻晶体的晶粒间晶格的位向有明显差别。晶粒之间的原子排列不规则的区域称

5、为晶界。 实际上,晶界就是不同晶格位向的相临晶粒在原子排列上的过度区。通常,晶粒尺寸很小,对于钢铁材料一般为10-1mm10-3mm。对于有色金属其晶粒尺寸一般都比钢大一些,有的可用眼睛直接看到 。如:镀锌钢板表面的镀锌层的晶粒尺寸可达到几毫米到几十毫米。 每个晶粒内部,晶格位向也并非完全一样,而是存在着许多晶格位向差小于2、3的更小的晶块。这些小晶块内部是完全相同的。这些小晶块称为亚晶粒,也称嵌镶块。见图2-9。亚晶粒间的过度区称为亚晶界,也称小角度晶界。它也是一种原子排列不太规则的区域。上一页下一页(二)晶体中的缺陷 1.点缺陷:点缺陷是指以一个点为中心。在它的周围造成原子排列的不规则,产

6、生晶格的畸变和内应力的晶体缺陷。主要有间隙原子,置换原子,晶格空位三种,见图2-10。在晶格的间隙处出现多余的晶体缺陷称为间隙原子;在晶格的接点处出现缺少原子的晶体称为晶体空格;在晶格的结点处出现的原子直径不同的异类原子的晶体缺陷称为置换原子。间隙原子和大径的置换原子会引起一个以一个点为中心的晶格局部“撑开”现象,称之为正畸变。而晶格空位和小直径的置换原子会引起一个点为中心的晶格局部“靠拢”现象,称之为负畸变。 晶体中的点缺陷都是处在不断的变化和运动中,其位置随时在变。这是金属原子扩散的一种主要方式,也是金属在固态下“相变”和化学热处理工艺的基础。这里说的缺陷不是指晶体的宏观缺陷,而是指晶体中

7、局部原子排列不规则的区域。根据晶体缺陷的几何特点和原子对排列不规则性的影响范围可分为三大类。上一页下一页(二)晶体中的缺陷2 线缺陷:线缺陷主要是指各种形式的“位错”。所谓位错是指晶体中某一列或若干列原子发生有规律的错排现象。它引起的晶格错线为中心轴的一个管状区域。位错有多种。最简单直观的一种称为刃型位错。它象一个刀刃的切入,故称刃型位错,见图2-11。 晶格中的位错多少,可用位错密度来表示。位错密度是指单位体积内位错的错线长度,量纲为(cm-2)。晶体中的位错首先是产生于晶体的结晶过程。晶体材料的内部的位错在相应的条件下,可以产生滑移,增值,交割,缠结,攀移等行为。这对金属的强度、塑性等力学

8、性能有重要影响。金属材料上一页下一页(二)晶体中的缺陷 3.面缺陷:晶体的面缺陷,主要是指前述的晶界和亚晶界。面缺陷是由于受到其两侧的不同晶格位向的晶粒或亚晶粒的影响而使原子呈不规则排列。原子的位置处于两晶格的取向所能适应的折衷位置上。面缺陷是有一定厚度的原子排列不规则的过渡带。其厚度重要取决于相邻的两晶粒或亚晶粒的晶格位向差的大小及晶格变化的纯度。对于金属,这个厚度通常在几个原子间距或到几百个原子间距大小的范围内变化。面缺陷处的晶格畸变较大,界面处能量高,影响范围也较大。因此,晶界具有与晶粒内部不同的特性。上一页下一页第二节 合金的晶体结构 在机械工程中,由于纯金属本身的力学性能很有限,满足

9、不了实际的需要。所以,很少使用纯金属制作零部件。而是将它们熔炼成合金,从而改善他们的力学性能,满足使用需要。所以,在机械工程中大量使用的金属材料绝大多数都是合金材料。如:钢、铸铁、黄铜、青铜、硬铝、锻铝等等。由于合金不只是一种化学元素,因此合金的晶体结构要比纯金属复杂许多。而且其显微组织仅用晶粒、晶界来表示也远为不足,必须引出一些新概念。上一页下一页一、基本概念5.显微组织:是指在显微镜下看到的相和晶粒的形态,大小和分布。1.合金:合金是指由一种金属元素与另外一种或多种金属或非金属元素,通过熔炼烧结的方法所形成的具有金属性质的新金属材料。2.组元:组元是指组成合金的最基本的,独立存在的物质,简

10、称元。组成合金的各种元素及各种化学元素都是组元。合金中有几种组元就称之为几元合金。3.合金系:合金系是指有相同的组元,而成分比例不同的一系列合金。4.相:相是指在合金中,凡是化学成分相同,晶体结构相同并有界面与其他部分分隔开来的一个均匀区域。上一页下一页二 合金的金相组织 由于合金的各个相的晶体结构是不同的,所以,在合金中,不同的相所在的区域具有不同的晶体结构。绝大多数的合金在液相时各组元之间都能互相溶解形成单一的均匀液相。但是,在固相时各种组元之间相互作用不同,可以形成各种晶体结构和化学成分的相。通常分为固溶体和金属化合物两大类。上一页下一页(一)固溶体 合金结晶成固态时,含量少的组元(溶质

11、)原子分布在含量多的组元(溶剂)晶格中形成一种与溶剂有相同晶格的相,称为固溶体。可见固溶体的重要标志重要标志是与溶剂有相同晶格。根据需要 固溶体有很多种分类方法。最常用的是按溶质固溶体原子在溶剂晶格中的分布位置来分类。有间隙固溶体和置换(代位)固溶体两大类。见图2-12和图2-13。上一页下一页1间隙固溶体: 溶质原子分布于溶剂的晶格间隙中所形成的固溶体,称为间隙固溶体。由于晶格的间隙通常都是很小的,所以,一般都是由原子半径较小的(0.1nm)非金属元素(如:C、N、B、O等)溶入过渡族金属中,形成间隙固溶体。例如:钢中的奥氏作就是C原子团溶到-Fe晶格的间隙中形成的固溶体。 间隙固溶体对溶质

12、溶解都是有限的,所以都是有限固溶体。 间隙固溶体中,溶质原子的排列是无秩序的,所以也都是无序固济体。上一页下一页2置换固溶体 溶质原子代替溶剂原子占据着溶剂晶格结点位置,而形成的固溶体,称为置换固溶体。在有色金属合金中和合金钢中都存在着置换固溶体。 置换固溶体又可分为有限固溶体和无限固溶体两类。所谓无限固溶体是指固溶体的溶解及是无限的。组成固溶体的两种元素随比例不同可以互为溶质或溶剂。例如:金一银合金系就是一种单相的无限的置换固溶体合金。 置换固溶体中溶质原子的分布一般也是无序分布的,通常也都是无序固溶体。但是,在一定条件下也会出现有序分布。这种固溶体称为有序固溶体(也称超结构)。例如:铜一金

13、合金系中当铜原子数与金原子数的比例为1比1或3比1并缓慢冷至室温时就会出现CuAu或Cu3Au的有序固溶体其晶格结构,见图2一14上一页下一页 有序固溶体,虽然化学元素成比例,但不是化合物。当把它加热到一定温度时就会变成无序固溶体。若是把它再缓慢地冷到这个温度之下又可变为有序的。 这个无序到有序的转变过程称固溶体的有序化。固溶体的有序化也会变化。如:硬度和脆性增加,塑性和电阻率下降等。 上一页下一页3.固溶体的溶解度 溶质原子溶于固溶体中的量称为固溶体的浓度。港质在固溶作中的体中的溶解度。不同固溶体的溶解度不相同。同一种固溶体随温度溶解度也增加,反之下降。 上一页下一页4影响因溶体的晶体结构和

14、溶解度主要因素目前已被公认的主要因素有:(1)原子直径因素:当溶质与溶剂的原子直径相差较小时易形成置换固溶体,而且直径差愈小,其溶解度也会愈大。这是因为,原子直径差会引起晶格的畸变,使晶格的畸变能增加。原子直径差愈大,畸变能增加愈剧。随着畸变能的增加将使这种固溶体晶格结构的稳定性下降。自然这种固溶体本身的存在也就不稳定了,这将会导致其它相的形成。但是,若两种原子直径差愈小,畸变能增加也愈小,尽管固溶体浓度不断增加,也不致于因畸变能的原因而引起其晶格结构的改变。这就有可能形成无限固溶体。当溶质与溶剂的原子直径差很大时是不能形成置换回溶体的。但是,却可以形成间隙固溶体。间隙固溶体的溶解度较小。上一

15、页下一页(2)负电性因素:所谓负电性是指某元素的原子从其它元素原子夺取电子而变成负离子的能力。在元素周期表中,两种元素的位置距离愈远,则其负电性差也愈大。两元素负电性愈大,则化学亲合的能力也愈大。它们之间就易于形成化合物,而不利于形成固溶体,即使形成固溶体其溶解度也很小。上一页下一页(3)电子浓度因素:在合金中,价电子数目否与原子数目n之比称为电子浓度。对于固溶体来讲,当溶质原子与溶剂原子的价电子数不相同时,随着溶质原子的进入,将使固溶体晶格中的电子浓度以及电子云的分布有所改变。并且,随着溶入的溶质数量愈多,电子浓度改变愈大。直至达到某一个极限电子浓度时,此固溶体的晶格结构就不稳定了。将会出现

16、新的相。可见,每种固港体只能稳定的存在于一定的电子浓度范围之内。例如:对于溶剂是一价的,而溶质是高于一份的固溶体,若晶格结构是面心立方,其电子浓度的极限值为l.36。若固溶体具有体心立方晶格则电子浓度的极限值为1.48。上一页下一页(5)温度因素:在一般情况下,固溶体随温度升高其溶解度也增加 这可能与固溶体晶格上原子的热振动有关。 (4)晶体结构因素:在多数的情况下,晶格类型相同的元素之间溶解度较大。晶格类型不同的元素之间溶解度较小。无限固溶作只能产生于相同晶格结构的元素之间。 上一页下一页 上述五种因素的综合作用决定了固溶体的种类及其溶解度的大小。如:钢铁中常见的五元素(C、Si、Mn、S、P)与铁元素的关系。C原子半径较小(0.077nm)与过渡族元素Fe在一定的条件下能形成间隙固溶体。C固溶到体心立方的-Fe中形成的间隙固溶体(铁素体),室温时的溶解度很小(0.0008%)近于零。当温度升高到727C时获得最大溶解度为0.02%。C固溶到面心立方的-Fe中所形成的间隙固溶体(奥氏体)最大溶解度可达2.11%。Si、Mn、S、P的原子直径远大于C原子的。因而与Fe只能形成置换固溶体

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > PPT模板库

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号