分子生物学第九章DNA重组技术教学讲义

上传人:youn****329 文档编号:242870198 上传时间:2022-01-19 格式:PPT 页数:76 大小:2.80MB
返回 下载 相关 举报
分子生物学第九章DNA重组技术教学讲义_第1页
第1页 / 共76页
分子生物学第九章DNA重组技术教学讲义_第2页
第2页 / 共76页
分子生物学第九章DNA重组技术教学讲义_第3页
第3页 / 共76页
分子生物学第九章DNA重组技术教学讲义_第4页
第4页 / 共76页
分子生物学第九章DNA重组技术教学讲义_第5页
第5页 / 共76页
点击查看更多>>
资源描述

《分子生物学第九章DNA重组技术教学讲义》由会员分享,可在线阅读,更多相关《分子生物学第九章DNA重组技术教学讲义(76页珍藏版)》请在金锄头文库上搜索。

1、第九章DNA重组技术对多数生物来说,基因本质是DNA,基因工程就是要改建DNA,涉及DNA序列的重新组合和建造,所以基因工程的核心就是人工的DNA重组(重组、建造的DNA分子只有纯化繁殖才有意义。纯的无性繁殖系统称为克隆。纯化繁殖DNA就称为DNA克隆或分子克隆,基因的纯化繁殖就称为基因克隆。所以DNA重组和分子克隆是与基因工程密切不可分的,是基因工程技术的核心和主要组成部分。重组DNA、分子克隆甚至成了基因工程的代名词。基因工程属于生物技术范畴,广义的生物技术指任何利用活的生物体或其一部分生产产品或改良生物品质的技术;狭义的生物技术是专指以DNA重组技术和单克隆技术为标志发展起来的新技术。一

2、般认为这新的生物技术包括基因工程、细胞工程、酶工程和发酵工程几方面的内容。基因工程是生物技术的核心和关键,是主导技术;细胞技术是生物技术的基础;酶工程是生物技术的条件;发酵工程是生物技术获得最终产品的手段,四个方面相互联系的。生物技术是一个综合技术体系,其中基因工程和细胞融合技术最为突出。蛋白质工程则是在基因工程基础上综合蛋白质化学、蛋白质晶体学、计算机学辅助设计等知识和技术发展起来的研究新领域,开创了按人类意愿设计和研制人类需要的蛋白质的新时期,被称为第二代基因工程。第一节工具酶一、限制性核酸内切酶的概念核酸酶可分为两类:核酸外切酶是从核酸的一端开始,一个接一个把核苷酸水解下来;核酸内切酶则

3、从核酸链中间水解3,5磷酸二酯键,将核酸链切断。很多细菌和细胞中都能识别外来的核酸并将其分解,1962年发现这是因为细菌中含有特异的核酸内切酶,能识别特定的核酸序列而将核酸切断;同时又伴随有特定的核酸修饰酶,最常见的是甲基化酶,能使细胞自身核酸特定的序列上碱基甲基化,从而避免受内切酶水解,外来核酸没有这种特异的甲基化修饰,就会被细胞的核酸酶所水解.这样细胞就构成了限制一修饰体系,其功能就是保护自身的DNA,分解外来的DNA,以保护和维持自身遗传信息的稳定。二、限制性核酸内切酶的命名按酶的来源的属、种名而定,取属名的第一个字母与种名的头两个字母组成的三个斜体字母作略语表示;如有株名,再加上一个字

4、母,其后再按发现的先后写上罗马数字。例如:从流感嗜血杆菌d株(Haemophilusinfluenzaed)中先后分离到3种限制酶,则分别命名为Hind、Hind和Hind。三、限制性核酸内切酶的分类按限制酶的组成、与修饰酶活性关系,切断核酸的情况不同,分为三类:类限制性核酸内切酶由3种不同亚基构成,兼具有修饰酶活性和依赖于ATP的限制性内切酶活性,它能识别和结合于特定的DNA序列位点,去随机切断在识别位点以外的DNA序列,通常在识别位点周围400-700bp。这类酶的作用需要Mg2+,S腺苷甲硫氨酸及ATP。类限制性核酸内切酶与类酶相似,是多亚蛋白质,既有内切酶活性,又有修饰酶活性,切断位点

5、在识别序列周围25-30bp范围内,酶促反应除Mg2+外,也需要ATP供给能量。类限制性核酸内切酶只由一条肽链构成,仅需Mg2+,切割DNA特异性最强,且就在识别位点范围内切断DNA。是分子生物学中应用最广的限制性内切酶。通常在重组DNA技术提到的限制性核酸内切酶主要指类酶而言。四、限制性核酸内切酶的作用大部分限制性核酸内切酶识别DNA序列具有回文结构特征,切断的双链DNA都产生5磷酸基和3羟基末端。不同限制性核酸内切酶识别和切割的特异性不同,结果有三种不同的情况:产生3突出粘性末端(cohesiveend):以Eoor为例:5GAATTC35GpOHTTAAC33CATAAG5EooP3CT

6、TAAOHpG5产生5突出的粘性末端:以Pst为例:5CTGCAG35CTGCApOHG33GACGTC5Pst3GOHpACGTC5产生平末端(bluntend):Nru为例:5TCGCGA35TCGpOHCGA33AGCGCT5Nru3AGCOhpGCT5DNA重组技术中最常用的工具酶酶 主要用途限制性核酸内切酶 识别DNA特定序列,切断DNA链DNA聚合酶 或其大片段(Klenow)缺口平移制作标记DNA探针 合成cDNA的第二链填补双链DNA3凹端DNA序列分析耐热DNA聚合酶(Taq DNA聚合酶聚合酶链反应(PCR)DNA连接酶连接两个DNA分子或片段多核苷酸激酶催化多核苷酸5羟基

7、末端磷酸化,制备末端标记探针末端转移酶在3末端加入同质多聚物尾SI核酸酶,绿豆核酸酶降解单链DNA或RNA,使双链DNA突出端变为平端DNA端酶降解DNA,在双链DNA上产生随机切口RNA酶A降解除RNA磷酸酶切除核酸末端磷酸基第二节重组DNA载体理想的基因工程载体一般至少有以下几点要求:能在宿主细胞中复制繁殖,而且最好要有较高的自主复制能力。容易进入宿主细胞,而且进入效率越高越好。容易插入外来核酸片段,插入后不影响其进入宿主细胞和在细胞中的复制。这就要求载体DNA上要有合适的限制性核酸内切酶位点。容易从宿主细胞中分离纯化出来,这才便于重组操作。有容易被识别筛选的标志,当其进入宿主细胞、或携带

8、着外来的核酸序列进入宿主细胞都能容易被辨认和分离出来。这才介于克隆操作。一、质粒载体质粒(plasmid)是细菌或细胞染色质以外的,能自主复制的,与细菌或细胞共生的遗传成分。其特点如下:是染色质外的双链共价闭合环形DNA(cccDNA),可自然形成超螺旋结构,不同质粒大小在2-300kb之间,15kb的小质粒比较容易分离纯化,15kb的大质粒则不易提取。能自主复制,是能独立复制的复制子。一般质粒DNA复制的质粒可随宿主细胞分裂而传给后代。每个质粒DNA上都有复制的起点,的质粒的可以整合到宿主细胞染色质DNA中,随宿主DNA复制,称为附加体。质粒对宿主生存并不是必需的。质粒也往往有其表型,其表现

9、不是宿主生存所必需的,但也不妨碍宿主的生存。某些质粒携带的基因功能有利于宿主细胞的特定条件下生存,例如,细菌中许多天然的质粒带有抗药性基因,如编码合成能分解破坏四环素、氯霉素、氨芐表霉素等的酶基因,这种质粒称为抗药性质粒,又称R质粒,带有R质粒的细菌就能在相应的抗生素存在生存繁殖。所以质粒对宿主不是寄生的,而是共生的。现在分子生物学使用的质粒载体都已不是原来细菌或细胞中天然存在的质粒,而是经过了许多的人工的改造。从不同的实验目的出发,人们设计了各种不同的类型的质粒载体,近年来发展很快,新的有特定用途的质粒不断被创建。图给出最常用的大肠杆菌克隆用质粒pUC19的图谱,此质粒的复制起点处序列经过改

10、造,能高频率起动质粒复制,使一个细菌pUC19的拷贝数可达500-700个。二、噬菌体载体噬菌体(phage)是感染细菌的一类病毒,有的噬菌体基因组较大,如噬菌和T噬菌体等;有的则较小,如M13、f1、fd噬菌体等。噬菌体由头和尾构成,其基因组是长约49kb的线性双链DNA分子,组装在头部蛋白质外壳内部,其序列已被全部测出。噬菌体感染时,通过尾管将基因组DNA注入大肠杆菌,而将其蛋白质外壳留在菌外。DNA进入大肠杆菌后以其两端12bp的互补单链粘末端环化成环状双链,可以两种不同的方式繁殖(图):溶菌性方式:利用宿主菌中的酶类和原料,DNA上基因可按调控的顺序表达合成构成噬菌体头、尾和尾丝所需的

11、各种蛋白质,DNA经多次复制合成许多子代DNA,于是装配成许多子代的噬菌体,最后裂菌,释放出许多新的噬菌体。溶原性方式:进入细菌的DNA可整合入细菌的染色质DNA中,随细菌染色体DNA复制,传给细菌后代,这个稳定潜伏在细菌染色质DNA中的DNA称为原噬菌体,含有原噬菌体的细菌称为溶源菌利用噬菌体作载体,主要是将外来目的DNA替代或插入中段序列,使其随左右臂一起包装成噬菌体,去感染大肠杆菌,并随噬菌体的溶菌繁殖而繁殖。现在广泛使用的噬菌体载体也是已作过许多人工改造的,主要的改造是:设计去除DNA上的一些限制性酶切点。这是因为DNA较大,序列中的限制性酶切点过多,妨碍其应用。在中段非必需区,替换插

12、入某些标志基因如上述的可供蓝白筛选lacI-lacZ序列,和多克隆位点等。由此可构建出两类噬菌体作载体;一类是插入型载体,可将外来序列插中段,常用的gt系列载体,一般容许插入5-7kb外来DNA;另一类是转换型载体,即可用外来DNA替代中段,如IMBL系列载体。三、动物病毒载体感染动物的病毒可改造用作动物细胞的载体。由于动物细胞的培养和操作较复杂、花费也较多,因而病毒载体构建时一般都把细菌质粒复制起始序列放置其中。使载体及其携带的外来序列能方便地在细菌中繁殖和克隆,然后再引入真核细胞。目前病毒载体常用者有改造来自猴肾病毒SV40、逆转录病毒和昆虫杆状病毒等,使用这些病毒载体的目的多为将目的基因

13、或序列放入动物细胞中表达或试验其功能、或作基因治疗等人基因组十分庞大,约含4109bp,建立和筛选人的基因组文库,要求有容量更大的载体,酵母人工染色体(YAC)载体应运而生。YAC含有酵母染色体端粒、着丝点及复制起点等功能序列,可插入长度达200-500kb的外源DNA,导入酵母细胞可以随细胞分裂周期复制繁殖供作克隆,成为人基因组研究计划的重要载体。第三节目的序列与载体的连接一、粘性末端连接如果目的序列两端有与载体上相同的限制性核酸内切酶位点,则同一限制酶切开产生的粘末端,在降低温度退火时,能重新互补结合,在DNA连接酶催化下,目的序列就与载体DNA链相连接(图:同一限制酶切割DNA粘性末端的

14、连接)。如果在连接的两个DNA片段没有能互补的粘性末端,可用末端核苷酸转移酶催化脱氨单核苷酸添加DNA的3末端,例如一般DNA3端加上polyG,另一股DNA加上polyC,这样人工在DNA两端做出能互补的共核苷酸多聚物粘性末端,退火后能结合连接(图),这样方法称为同聚物加尾法。二、平末端连接T4DNA连接酶也能催化限制性内切酶切割产生DNA平末端的连接。如果目的序列和载体上没有相同的限制性内切酶位点可供利用,用不同的限制性内切酶切割后的粘性末端不能互补结合,则可用适当的酶将DNA突出的末端削平或补齐成平末端,再用T4DNA连接酶连接,但平末端连接要比粘性末端连接的效率低得多。对平末端的DNA

15、,也可先连上人工设计合成的脱氧寡核苷酸双链接头,使DNA末端产生新的限制内切酶位点,经内切酶割后,即可按粘性末端相连(图:人工接头连接法)。第四节目的基因序列的来源和分离一、基因组DNA文库从生物组织细胞提取出全部DNA,用物理方法(超声波、搅拌剪力等)或酶法(限制性核酸内切酶的不完全酶解)将DNA降解成预期大小的片段,然后将这些片段与适当的载体(常用噬菌体、粘粒或YAC载体)连接,转入受体细菌或细胞,这样每一个细胞接受了含有一个基因组DNA片段与载体连接的重组DNA分子,而且可以繁殖扩增,许多细胞一起组成一个含有基因组各DNA片段克隆的集合体,就称为基因组DNA文库(genomicDNAli

16、brary)。基因组文库是具有生物种属特异性的。构建基因组文库,再用分子杂交等技术去钓取基因克隆的方法,称为鸟枪法或散弹射击法,意味着从含有众多的基因序列克隆群中去获取目的基因或序列。当生物基因组比较小时,此法较易成功;当生物基因组很大时,构建其完整的基因组文库就非易事,从庞大的文库中去克隆目的基因工程量也很大。基因组DNA文库的构建二、cDNA文库提取出组织细胞的全部mRNA,在体外反转录成cDNA,与适当的载体常用噬菌体或质粒载体连接后转化受体菌,则每个细菌含有一段cDNA,并能繁殖扩增,这样包含着细胞全部mRNA信息的cDNA克隆集合称为该组织细胞的cDNA文库.基因组含有的基因在特定的组织细胞中只有一部分表达,而且处在不同环境条件、不同分化时期的细胞其基因表达的种类和强度也不尽相同,所以cDNA文库具有组织细胞特异性。cDNA文库显然比基因组DNA文库小得多,能够比较容易从中筛选克隆得细胞特异表达的基因。但对真核细胞来说,从基因组DNA文库获得的基因与从cDNA文库获得的不同,基因组DNA文库所含的是带有含子和外显子的基因组基因,而从cDNA文库中获得的是已经过剪接、去除了内含

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号