解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设每人面试合格的概率都是,且面试是否合格互不影响.求:(Ⅰ)至少有1人面试合格的概率;(Ⅱ)签约人数的分布列和数学期望.解: 用A,B,C分别表示事件甲、乙、丙面试合格.由题意知A,B,C相互独立,且P(A)=P(B)=P(C)=.(Ⅰ)至少有1人面试合格的概率是(Ⅱ)的可能取值为0,1,2,3. = = = = 所以, 的分布列是0123P的期望17.(本小题满分12分) 如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2. (Ⅰ)证明:平面PBE⊥平面PAB;(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小.解: 解法一(Ⅰ)如图所示,连结BD,由ABCD是菱形且∠BCD=60°知,△BCD是等边三角形.因为E是CD的中点,所以BE⊥CD,又AB∥CD,所以BE⊥AB.又因为PA⊥平面ABCD,平面ABCD,所以PA⊥BE.而AB=A,因此BE⊥平面PAB.又平面PBE,所以平面PBE⊥平面PAB.(Ⅱ)延长AD、BE相交于点F,连结PF.过点A作AH⊥PB于H,由(Ⅰ)知平面PBE⊥平面PAB,所以AH⊥平面PBE.在Rt△ABF中,因为∠BAF=60°,所以,AF=2AB=2=AP.在等腰Rt△PAF中,取PF的中点G,连接AG.则AG⊥PF.连结HG,由三垂线定理的逆定理得,PF⊥HG.所以∠AGH是平面PAD和平面PBE所成二面角的平面角(锐角).在等腰Rt△PAF中, 在Rt△PAB中, 所以,在Rt△AHG中, 故平面PAD和平面PBE所成二面角(锐角)的大小是解法二: 如图所示,以A为原点,建立空间直角坐标系.则相关各点的坐标分别是A(0,0,0),B(1,0,0),P(0,0,2),(Ⅰ)因为,平面PAB的一个法向量是,所以共线.从而BE⊥平面PAB.又因为平面PBE,故平面PBE⊥平面PAB. (Ⅱ)易知 设是平面PBE的一个法向量,则由得所以 设是平面PAD的一个法向量,则由得所以故可取 于是, 故平面PAD和平面PBE所成二面角(锐角)的大小是18.(本小题满分12分) 数列 (Ⅰ)求并求数列的通项公式; (Ⅱ)设证明:当 解: (Ⅰ)因为所以 一般地,当时,=,即所以数列是首项为1、公差为1的等差数列,因此当时,所以数列是首项为2、公比为2的等比数列,因此故数列的通项公式为(Ⅱ)由(Ⅰ)知, ① ② ①-②得, 所以 要证明当时,成立,只需证明当时,成立. 证法一 (1)当n = 6时,成立. (2)假设当时不等式成立,即 则当n=k+1时, 由(1)、(2)所述,当n≥6时,.即当n≥6时, 证法二 令,则 所以当时,.因此当时,于是当时,综上所述,当时, 19.(本小题满分13分)在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东且与点A相距40海里的位置B,经过40分钟又测得该船已行驶到点A北偏东+(其中sin=,)且与点A相距10海里的位置C. (I)求该船的行驶速度(单位:海里/小时);(II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.解: (I)如图,AB=40,AC=10,由于,所以cos=由余弦定理得BC=所以船的行驶速度为(海里/小时).(II)解法一 如图所示,以A为原点建立平面直角坐标系,设点B、C的坐标分别是B(x1,y2), C(x1,y2),BC与x轴的交点为D.由题设有,x1=y1= AB=40,x2=ACcos,y2=ACsin所以过点B、C的直线l的斜率k=,直线l的方程为y=2x-40.又点E(0,-55)到直线l的距离d=所以船会进入警戒水域.解法二: 如图所示,设直线AE与BC的延长线相交于点Q.在△ABC中,由余弦定理得,==.从而在中,由正弦定理得,AQ=由于AE=55>40=AQ,所以点Q位于点A和点E之间,且QE=AE-AQ=15.过点E作EP BC于点P,则EP为点E到直线BC的距离.在Rt中,PE=QE·sin=所以船会进入警戒水域.20.(本小题满分13分)若A、B是抛物线y2=4x上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于点P,则称弦AB是点P的一条“相关弦”.已知当x>2时,点P(x,0)存在无穷多条“相关弦”.给定x0>2.(I)证明:点P(x0,0)的所有“相关弦”的中点的横坐标相同;(II) 试问:点P(x0,0)的“相关弦”的弦长中是否存在最大值?若存在,求其最大值(用x0表示):若不存在,请说明理由.解: (I)设AB为点P(x0,0)的任意一条“相关弦”,且点A、B的坐标分别是(x1,y1)、(x2,y2)(x1x2),则y21=4x1, y22=4x2,两式相减得(y1+y2)(y1-y2)=4(x1-x2).因为x1x2,所以y1+y20.设直线AB的斜率是k,弦AB的中点是M(xm, ym),则k=.从而AB的垂直平分线l的方程为 又点P(x0,0)在直线上,所以 而于是故点P(x0,0)的所有“相关弦”的中点的横坐标都是x0-2.(Ⅱ)由(Ⅰ)知,弦AB所在直线的方程是,代入中,整理得 (·)则是方程(·)的两个实根,且设点P的“相关弦”AB的弦长为l,则 因为0<<4xm=4(xm-2) =4x0-8,于是设t=,则t(0,4x0-8).记l2=g(t)=-[t-2(x0-3)]2+4(x0-1)2.若x0>3,则2(x0-3) (0, 4x0-8),所以当t=2(x0-3),即=2(x0-3)时,l有最大值2(x0-1).若23时,点P(x0,0)的“相关弦”的弦。