压轴必刷】2023年中考数学压轴大题之经典模型培优案专题12费马点问题 解题策略费马(Ferrmat,1601年8月17日﹣1665年1月12日),生于法国南部图卢兹(Toulouse)附近的波蒙•德•罗曼,被誉为业余数学家之王.1643年,费马曾提出了一个著名的几何问题:给定不在一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最小的点的位置.另一位数学家托里拆利成功地解决了这个问题:如图1,△ABC(三个内角均小于120°)的三条边的张角都等于120°,即满足∠APB=∠BPC=∠APC=120°的点P,就是到点A,B,C的距离之和最小的点,后来人们把这个点P称为“费马点”.下面是“费马点”的证明过程:如图2,将△APB绕着点B逆时针旋转60°得到△A′P′B,使得A′P′落在△ABC外,则△A′AB为等边三角形,∴P′B=PB=PP′,于是PA+PB+PC=P′A′+PP′+PC≥A′C,∴当A',P',P,C四点在同一直线上时PA+PB+PC有最小值为A'C的长度,∵P′B=PB,∠P'BP=60°,∴△P'BP为等边三角形,则当A',P',P,C四点在同一直线上时,∠BPC=180°﹣∠P'PB=180°﹣60°=120°,∠APB=∠A'PB=180°﹣∠BP'P=180°﹣60°=120°,∠APC=360°﹣∠BPC﹣∠APC=360°﹣120°﹣120°=120°,∴满足∠APB=∠BPC=∠APC=120°的点P,就是到点A,B,C的距离之和最小的点;经典例题【例1】.如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.(1)如点P为锐角△ABC的费马点.且∠ABC=60°,PA=3,PC=4,求PB的长.(2)如图(2),在锐角△ABC外侧作等边△ACB′连接BB′.求证:BB′过△ABC的费马点P,且BB′=PA+PB+PC.(3)已知锐角△ABC,∠ACB=60°,分别以三边为边向形外作等边三角形ABD,BCE,ACF,请找出△ABC的费马点,并探究S△ABC与S△ABD的和,S△BCE与S△ACF的和是否相等.【分析】(1)由题意可得△ABP∽△BCP,所以PB2=PA•PC,即PB=2;(2)在BB'上取点P,使∠BPC=120°,连接AP,再在PB'上截取PE=PC,连接CE.由此可以证明△PCE为正三角形,再利用正三角形的性质得到PC=CE,∠PCE=60°,∠CEB'=120°,而△ACB'为正三角形,由此也可以得到AC=B'C,∠ACB'=60°,现在根据已知的条件可以证明△ACP≌△B'CE,然后利用全等三角形的性质即可证明题目的结论;(3)作CP平分∠ACB,交BC的垂直平分线于点P,P点即费马点;要证明以上结论,需创造一些条件,首先可从△ABC中分出一部分使得与△ACF的面积相等,则过A作AM∥FC交BC于M,连接DM、EM,就可创造出这样的条件,然后再证其它的面积也相等即可.【解析】(1)∵∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,∴∠PAB=∠PBC,又∵∠APB=∠BPC=120°,∴△ABP∽△BCP,∴=∴PB2=PA•PC=12,∴PB=2;(2)证明:在BB'上取点P,使∠BPC=120°.连接AP,再在PB'上截取PE=PC,连接CE.∠BPC=120°,∴∠EPC=60°,∴△PCE为正三角形,∴PC=CE,∠PCE=60°,∠CEB'=120°.∵△ACB'为正三角形,∴AC=B′C,∠ACB'=60°,∴∠PCA+∠ACE=∠ACE+∠ECB′=60°,∴∠PCA=∠ECB′,∴△ACP≌△B′CE,∴∠APC=∠B′EC=120°,PA=EB′,∴∠APB=∠APC=∠BPC=120°,∴P为△ABC的费马点.∴BB'过△ABC的费马点P,且BB'=EB'+PB+PE=PA+PB+PC.(3)如下图,作CP平分∠ACB,交BC的垂直平分线于点P,P点就是费马点;证明:过A作AM∥FC交BC于M,连接DM、EM,∵∠ACB=60°,∠CAF=60°,∴∠ACB=∠CAF,∴AF∥MC,∴四边形AMCF是平行四边形,又∵FA=FC,∴四边形AMCF是菱形,∴AC=CM=AM,且∠MAC=60°,∵在△BAC与△EMC中,CA=CM,∠ACB=∠MCE,CB=CE,∴△BAC≌△EMC,∵∠DAM=∠DAB+∠BAM=60°+∠BAM∠BAC=∠MAC+∠BAM=60°+∠BAM∴∠BAC=∠DAM在△ABC和△ADM中AB=AD,∠BAC=∠DAM,AC=AM∴△ABC≌△ADM(SAS)故△ABC≌△MEC≌△ADM,在CB上截取CM,使CM=CA,再连接AM、DM、EM (辅助线这样做△AMC就是等边三角形了,后边证明更简便)易证△AMC为等边三角形,在△ABC与△MEC中,CA=CM,∠ACB=∠MCE,CB=CE,∴△ABC≌△MEC(SAS),∴AB=ME,∠ABC=∠MEC,又∵DB=AB,∴DB=ME,∵∠DBC=∠DBA+∠ABC=60°+∠ABC,∠BME=∠BCE+∠MEC=60°+∠MEC,∴∠DBC=∠BME,∴DB∥ME,即得到DB与ME平行且相等,故四边形DBEM是平行四边形,∴四边形DBEM是平行四边形,∴S△BDM+S△DAM+S△MAC=S△BEM+S△EMC+S△ACF,即S△ABC+S△ABD=S△BCE+S△ACF.【例2】.探究问题:(1)阅读理解:①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离;②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB•CD+BC•DA=AC•BD.此为托勒密定理;(2)知识迁移:①请你利用托勒密定理,解决如下问题:如图(C),已知点P为等边△ABC外接圆的上任意一点.求证:PB+PC=PA;②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法:第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆;第二步:在上任取一点P′,连接P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+ P′D ;第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段 AD 的长度即为△ABC的费马距离.(3)知识应用:2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值.【分析】(2)知识迁移①问,只需按照题意套用托勒密定理,再利用等边三角形三边相等,将所得等式两边都除以等边三角形的边长,即可获证. ②问,借用①问结论,及线段的性质“两点之间线段最短”数学容易获解.(3)知识应用,在(2)的基础上先画出图形,再求解.【解答】(2)①证明:由托勒密定理可知PB•AC+PC•AB=PA•BC∵△ABC是等边三角形∴AB=AC=BC,∴PB+PC=PA,②P′D、AD,(3)解:如图,以BC为边长在△ABC的外部作等边△BCD,连接AD,则知线段AD的长即为最短距离.∵△BCD为等边三角形,BC=4,∴∠CBD=60°,BD=BC=4,∵∠ABC=30°,∴∠ABD=90°,在Rt△ABD中,∵AB=3,BD=4,∴AD===5(km),∴从水井P到三村庄A、B、C所铺设的输水管总长度的最小值为5km.【例3】.如图,在平面直角坐标系xOy中,点B的坐标为(0,2),点D在x轴的正半轴上,∠ODB=30°,OE为△BOD的中线,过B、E两点的抛物线与x轴相交于A、F两点(A在F的左侧).(1)求抛物线的解析式;(2)等边△OMN的顶点M、N段AE上,求AE及AM的长;(3)点P为△ABO内的一个动点,设m=PA+PB+PO,请直接写出m的最小值,以及m取得最小值时,线段AP的长.【分析】(1)已知点B的坐标,可求出OB的长;在Rt△OBD中,已知了∠ODB=30°,通过解直角三角形即可求得OD的长,也就得到了点D的坐标;由于E是线段BD的中点,根据B、D的坐标即可得到E点的坐标;将B、E的坐标代入抛物线的解析式中,即可求得待定系数的值,由此确定抛物线的解析式;(2)过E作EG⊥x轴于G,根据A、E的坐标,即可用勾股定理求得AE的长;过O作AE的垂线,设垂足为K,易证得△AOK∽△AEG,通过相似三角形所得比例线段即可求得OK的长;在Rt△OMK中,通过解直角三角形,即可求得MK的值,而AK的长可在Rt△AEK中由勾股定理求得,根据AM=AK﹣KM或AM=AK+KM即可求得AM的长;(3)由于点P到△ABO三顶点的距离和最短,那么点P是△ABO的费马点,即∠APO=∠OPB=∠APB=120°;易证得△OBE是等边三角形,那么PA+PO+PB的最小值应为AE的长;求AP的长时,可作△OBE的外切圆(设此圆为⊙Q),那么⊙Q与AE的交点即为m取最小值时P点的位置;设⊙Q与x轴的另一交点(O点除外)为H,易求得点Q的坐标,即可得到点H的坐标,也就得到了AH的长,相对于⊙Q来说,AE、AH都是⊙Q的割线,根据割线定理即可求得AP的长.【解析】(1)过E作EG⊥OD于G(1分)∵∠BOD=∠EGD=90°,∠D=∠D,∴△BOD∽△EGD,∵点B(0,2),∠ODB=30°,可得OB=2,;∵E为BD中点,∴∴EG=1,∴∴点E的坐标为(2分)∵抛物线经过B(0,2)、两点,∴,可得;∴抛物线的解析式为;(3分)(2)∵抛物线与x轴相交于A、F,A在F的左侧,∴A点的坐标为∴,∴在△AGE中,∠AGE=90°,(4分)过点O作OK⊥AE于K,可得△AOK∽△AEG∴∴∴∴∵△OMN是等边三角形,∴∠NMO=60°∴;∴,或;(6分)(写出一个给1分)(3)如图;以AB为边做等边三角形AO′B,以OA为边做等边三角形AOB′;易证OE=OB=2,∠OBE=60°,则△OBE是等边三角形;连接OO′、BB′、AE,它们的交点即为m最小时,P点的位置(即费马点);∵OA=OB′,∠B′OB=∠AOE=150°,OB=OE,∴△AOE≌△B′OB;∴∠B′BO=∠AEO;∵∠BOP=∠EOP′,而∠BOE=60°,∴∠POP'=60°,∴△POP′为等边三角形,∴OP=PP′,∴PA+PB+PO=AP+OP′+P′E=AE;即m最小=AE=;如图;作正△OBE的外接圆⊙Q,根据费马点的性质知∠BPO=120°,则∠PBO+∠BOP=60°,而∠EBO=∠EOB=60°;∴∠PBE+∠POE=180°,∠BPO+∠BEO=180°;即B、P、O、。