文档详情

初中数学几何题思考方式和解题思路总结

鲁**
实名认证
店铺
DOCX
15.54KB
约5页
文档ID:603079013
初中数学几何题思考方式和解题思路总结_第1页
1/5

证明题要掌握三种思考方式● 正向思维对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了● 逆向思维顾名思义,就是从相反的方向思考问题在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去这样我们就找到了解题的思路,然后把过程正着写出来就可以了● 正逆结合对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等正逆结合,战无不胜证明题要用到哪些原理     ● 证明两线段相等1.两全等三角形中对应边相等2.同一三角形中等角对等边3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等5.直角三角形斜边的中点到三顶点距离相等6.线段垂直平分线上任意一点到线段两段距离相等7.角平分线上任一点到角的两边距离相等8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等12.两圆的内(外)公切线的长相等13.等于同一线段的两条线段相等● 证明两个角相等1.两全等三角形的对应角相等2.同一三角形中等边对等角3.等腰三角形中,底边上的中线(或高)平分顶角4.两条平行线的同位角、内错角或平行四边形的对角相等5.同角(或等角)的余角(或补角)相等6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角8.相似三角形的对应角相等9.圆的内接四边形的外角等于内对角10.等于同一角的两个角相等● 证明两条直线互相垂直1.等腰三角形的顶角平分线或底边的中线垂直于底边。

2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角3.在一个三角形中,若有两个角互余,则第三个角是直角4.邻补角的平分线互相垂直5.一条直线垂直于平行线中的一条,则必垂直于另一条6.两条直线相交成直角则两直线垂直7.利用到一线段两端的距离相等的点段的垂直平分线上8.利用勾股定理的逆定理9.利用菱形的对角线互相垂直10.在圆中平分弦(或弧)的直径垂直于弦11.利用半圆上的圆周角是直角● 证明两直线平行1.垂直于同一直线的各直线平行2.同位角相等,内错角相等或同旁内角互补的两直线平行3.平行四边形的对边平行4.三角形的中位线平行于第三边5.梯形的中位线平行于两底6.平行于同一直线的两直线平行7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边● 证明线段的和差倍分1.作两条线段的和,证明与第三条线段相等2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段3.延长短线段为其二倍,再证明它与较长的线段相等4.取长线段的中点,再证其一半等于短线段5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。

● 证明角的和差倍分1.与证明线段的和、差、倍、分思路相同2.利用角平分线的定义3.三角形的一个外角等于和它不相邻的两个内角的和● 证明线段不等1.同一三角形中,大角对大边2.垂线段最短3.三角形两边之和大于第三边,两边之差小于第三边4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大5.同圆或等圆中,弧大弦大,弦心距小6.全量大于它的任何一部分● 证明两角的不等1.同一三角形中,大边对大角2.三角形的外角大于和它不相邻的任一内角3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大4.同圆或等圆中,弧大则圆周角、圆心角大5.全量大于它的任何一部分● 证明比例式或等积式1.利用相似三角形对应线段成比例2.利用内外角平分线定理3.平行线截线段成比例4.直角三角形中的比例中项定理即射影定理5.与圆有关的比例定理---相交弦定理、切割线定理及其推论6.利用比利式或等积式化得● 证明四点共圆1.对角互补的四边形的顶点共圆2.外角等于内对角的四边形内接于圆3.同底边等顶角的三角形的顶点共圆(顶角在底边的同侧)4.同斜边的直角三角形的顶点共圆5.到顶点距离相等的各点共圆。

下载提示
相似文档
正为您匹配相似的精品文档
相关文档