一元二次方程的解法(二)配方法—知识讲解(基础) 【学习目标】1.了解配方法的概念,会用配方法解一元二次方程;2.掌握运用配方法解一元二次方程的基本步骤;3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能力.【要点梳理】知识点一、一元二次方程的解法---配方法1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法. (2)配方法解一元二次方程的理论依据是公式:. (3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方; ④再把方程左边配成一个完全平方式,右边化为一个常数; ⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式.知识点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.要点诠释: “配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好. 【典型例题】类型一、用配方法解一元二次方程1.(2014•岱岳区校级模拟)用配方法解方程:2x2+3x﹣1=0. 【思路点拨】 首先把方程的二次项系数化为1,移项,然后在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解.【答案与解析】解:2x2+3x﹣1=0x2+x2+)x+x1=【点评】一般地,用先配方,再开平方的方法解一元二次方程,应按以下步骤进行: (1)把形如ax2+bx+c=0(a≠0)的方程中二次项的系数化为1; (2)把常数项移到方程的右边; (3)方程的两边都加“一次项系数一半的平方”,配方得形如(x+m)2=n(n≥0)的方程; (4)用直接开平方的方法解此题.举一反三:【变式】用配方法解方程. (1)x2-4x-2=0; (2)x2+6x+8=0. 【答案】(1)方程变形为x2-4x=2. 两边都加4,得x2-4x+4=2+4. 利用完全平方公式,就得到形如(x+m)2=n的方程,即有(x-2)2=6. 解这个方程,得x-2=或x-2=-. 于是,原方程的根为x=2+或x=2-. (2)将常数项移到方程右边x2+6x=-8. 两边都加“一次项系数一半的平方”=32,得 x2+6x+32=-8+32, ∴ (x+3)2=1. 用直接开平方法,得x+3=1, ∴ x=-2或x=-4.类型二、配方法在代数中的应用2.若代数式,,则的值( )A.一定是负数 B.一定是正数 C.一定不是负数 D.一定不是正数【答案】B;【解析】(作差法).故选B.【点评】本例是“配方法”在比较大小中的应用,通过作差法最后拆项、配成完全平方,使此差大于零而比较出大小.【高清ID号:388499关联的位置名称(播放点名称):配方法与代数式的最值—例4】3.(2014•甘肃模拟)用配方法证明:二次三项式﹣8x2+12x﹣5的值一定小于0.【答案与解析】解:﹣8x2+12x﹣5=﹣8(x2﹣x)﹣5=﹣8[x2﹣x+()2]﹣5+8()2=﹣8(x﹣)2﹣,∵(x﹣)2≥0,∴﹣8(x﹣)2≤0,∴﹣8(x﹣)2﹣<0,即﹣8x2+12﹣5的值一定小于0.【点评】利用配方法将代数式配成完全平方式后,再分析代数式值的符号. 注意在变形的过程中不要改变式子的值.举一反三:【高清ID号:388499关联的位置名称(播放点名称):配方法与代数式的最值—例4变式1】【变式】求代数式 x2+8x+17的最小值【答案】x2+8x+17= x2+8x+42-42+17=(x+4)2+1 ∵(x+4)2≥0,∴当(x+4)2=0时,代数式 x2+8x+17的最小值是1.4.已知,求的值.【思路点拨】 解此题关键是把拆成 ,可配成两个完全平方式.【答案与解析】将原式进行配方,得,即,∴ 且,∴ ,.∴ .【点评】本题可将原式用配方法转化成平方和等于0的形式,进而求出a.b的值.4。