【7A文】工艺安全信息

上传人:Jerm****014 文档编号:92691689 上传时间:2019-07-12 格式:DOC 页数:27 大小:155KB
返回 下载 相关 举报
【7A文】工艺安全信息_第1页
第1页 / 共27页
【7A文】工艺安全信息_第2页
第2页 / 共27页
【7A文】工艺安全信息_第3页
第3页 / 共27页
【7A文】工艺安全信息_第4页
第4页 / 共27页
【7A文】工艺安全信息_第5页
第5页 / 共27页
点击查看更多>>
资源描述

《【7A文】工艺安全信息》由会员分享,可在线阅读,更多相关《【7A文】工艺安全信息(27页珍藏版)》请在金锄头文库上搜索。

1、【MeiWei_81重点借鉴文档】企业操作人员应掌握工艺安全信息1、信息包括:物理特性;化学特性;毒性;职业接触限值。2、流程图:化学反应过程;最大储存量;工艺参数(包括:压力、流量、温度的安全上下值。3、设备信息:如设备材料、安全设施(如报警器、连锁装置等)。、【注:1、企业有关人员应掌握半水煤气、氨、氢气、一氧化碳、二氧化碳、二氧化硫、硫化氢、氮气、氢氧化钠、硫酸、盐酸等化学品的物理性数据、活性数据、热和化学稳定性数据、腐蚀性数据、毒性信息、职业接触限值、急救和消防措施等工艺安全信息内容。2、企业应对装置正常运行过程中的各项工艺参数进行严格控制,安全工艺参数至少满足:a)气柜出入口管线氧含

2、量0.005(体积分数);b)气化炉氧油比0.850.90;c)回收吹风气燃烧炉上段温度750;d)高压甲醇塔、烷化塔、提温换热器、氨合成塔塔壁温度120;e)尿素合成塔出口物料含镍量0.2ppm;f)入尿素塔二氧化碳气体中氧含量:0.0040.006(体积分数);g)液氨贮槽充装量禁止超过贮槽容积的85,粗甲醇贮槽最大充装量不得超过90%。】目录半水煤气工艺安全信息内容氨工艺安全信息内容一氧化碳工艺安全信息内容盐酸工艺安全信息内容氢氧化钠工艺安全信息内容半水煤气工艺安全信息内容水煤气是通过炽热的焦炭而生成的气体,主要成份是一氧化碳,氢气,燃烧后排放水和二氧化碳,有微量CO、HC和NOR。燃烧

3、速度是汽油的7.5倍,抗爆性好,据国外研究和专利的报导压缩比可达12.5。热效率提高2040、功率提高15、燃耗降低30,尾气净化近欧IV标准,还可用微量的铂催化剂净化。比醇、醚简化制造和减少设备,成本和投资更低。压缩或液化与氢气相近,但不用脱除CO,建站投资较低。还可用减少的成本和投资部分补偿压缩(制醇醚也要压缩)或液化的投资和成本。有毒,工业上用作燃料,又是化工原料。制作方法将水蒸气通过炽热的煤层可制得较洁净的水煤气(主要成分是CO和H2),现象为火焰腾起更高,而且变为淡蓝色(氢气和CO燃烧的颜色)。化学方程式为C+H2O=(高温)CO+H2。这就是湿煤比干煤燃烧更旺的原因。煤气厂常在家用

4、水煤气中特意掺入少量难闻气味的气体,目的是CO和H2为无色无味气体,当煤气泄漏时能闻到及时发现。甲烷和水也可制水煤气化学方程式为CH4+H2O=CO+3H2另:一种低热值煤气。由蒸汽与灼热的无烟煤或焦炭作用而得。主要成分为氢气和一氧化碳,也含有少量二氧化碳、氮气和甲烷等组分;各组分的含量取决于所用原料及气化条件。主要用作合成氨、合成液体燃料等的原料,或作为工业燃料气的补充来源。工业上,水煤气的生产一般采用间歇周期式固定床生产技术。炉子结构采用UGI气化炉的型式。在气化炉中,碳与蒸汽主要发生如下的水煤气反应:C+H2O=(高温)CO+H2C+2H2O=(高温)CO2+2H2以上反应均为吸热反应,

5、因此必须向气化炉内供热。通常,先送空气入炉,烧掉部分燃料,将热量蓄存在燃料层和蓄热室里,然后将蒸汽通入灼热的燃料层进行反应。由于反应吸热,燃料层及蓄热室温度下降至一定温度时,又重新送空气入炉升温,如此循环。当目的是生产燃料气时,为了提高煤气热值,有时提高出炉煤气温度,借以向热煤气中喷入油类,使油类裂解,即得所谓增热水煤气。用途气体燃料的一种。主要成分是氢和一氧化碳。由水蒸气和赤热的无烟煤或焦炭作用而得。工业上大多用蒸气和空气轮流吹风的间歇法,或用蒸气和氧一起吹风的连续法。热值约为10500千焦/标准立方米。此外,尚有用蒸气和空气一起吹风所得的“半水煤气”。可作为燃料,或用作合成氨、合成石油、有

6、机合成、氢气制造等的原料。近年来,正在开发高温气冷堆的技术,用氦为热载体将核反应热转送至气化炉作为热源,以生产水煤气。安全隐患但水煤气存在着许多隐患,水煤气发生炉长期运行后极易产生大量硫化氢、焦油、酚水等污染物,影响半径达500米,对农作物、空气环境和人体等都有较大的损害。它产生的多种废气和恶臭,会引起人头痛、头晕,居民根本受不了。此外,由于水煤气主要由一氧化碳、氢气等易燃气体组成,一旦泄漏,则极可能发生爆炸和中毒,造成群死群伤事件。对于水煤气中的硫化氢,在其后煤气燃烧后会转化为二氧化硫和水,因此,在燃煤气的炉窑中燃烧后尾气中有二氧化硫,需要脱硫处理,但是目前使用的较少。另:一种低热值煤气。由

7、蒸汽与灼热的无烟煤或焦炭作用而得。主要成分为氢气和一氧化碳,也含有少量二氧化碳、氮气和甲烷等组分;各组分的含量取决于所用原料及气化条件。主要用作台成氨、合成液体燃料等的原料,或作为工业燃料气的补充来源。工业上,水煤气的生产一般采用间歇周期式固定床生产技术。炉子结构采用UGI气化炉的型式。在气化炉中,碳与蒸汽主要发生如下的水煤气反应:C+H2O=(高温)CO+H2C+2H2O=(高温)CO2+2H2以上反应均为吸热反应,因此必须向气化炉内供热。通常,先送空气入炉,烧掉部分燃料,将热量蓄存在燃料层和蓄热室里,然后将蒸汽通入灼热的燃料层进行反应。由于反应吸热,燃料层及蓄热室温度下降至一定温度时,又重

8、新送空气入炉升温,如此循环。当目的是生产燃料气时,为了提高煤气热值,有时提高出炉煤气温度,借以向热煤气中喷入油类,使油类裂解,即得所谓增热水煤气。氨的工艺安全信息内容氨(Ammonia,即阿摩尼亚),或称“氨气”,分子式为NH3,是一种无色气体,有强烈的刺激气味。极易溶于水,常温常压下1体积水可溶解700倍体积氨。氨对地球上的生物相当重要,它是所有食物和肥料的重要成分。氨也是所有药物直接或间接的组成。氨有很广泛的用途,同时它还具有腐蚀性等危险性质。由于氨有广泛的用途,氨是世界上产量最多的无机化合物之一,多于八成的氨被用于制作化肥。由于氨可以提供孤对电子,所以它也是一种路易斯碱。物理性质氨气通常

9、情况下是有刺激性气味的无色气体,密度比空气小,极易溶于水,易液化,液氨可作制冷剂。以700:1的溶解度溶于水。摩尔质量:17.0306CAS:7664-41-7密度:0.6942熔点:-77.73C沸点:-33.34C在水中溶解度:89.9g/100mL,0C偶极距:1.42D主要化学性质1、NH3遇HCl气体有白烟产生,可与氯气反应。2、氨水(混称氢氧化铵,NH3H2O)可腐蚀许多金属,一般若用铁桶装氨水,铁桶应内涂沥青。3、氨的催化氧化是放热反应,产物是NO,是工业制硝酸的重要反应,NH3也可以被氧化成N2。4、NH3能使湿润的紫色石蕊试纸变蓝。在水中产生少量氢氧根离子,呈弱碱性.主要用途

10、NH3用于制氨水、液氨、氮肥(尿素、碳铵等)、HNO3、铵盐、纯碱,广泛应用于化工、轻工、化肥、制药、合成纤维、塑料、染料、制冷剂等。催化剂的中毒催化剂的催化能力一般称为催化活性。有人认为:由于催化剂在反应前后的化学性质和质量不变,一旦制成一批催化剂之后,便可以永远使用下去。实际上许多催化剂在使用过程中,其活性从小到大,逐渐达到正常水平,这就是催化剂的成熟期。接着,催化剂活性在一段时间里保持稳定,然后再下降,一直到衰老而不能再使用。活性保持稳定的时间即为催化剂的寿命,其长短因催化剂的制备方法和使用条件而异。催化剂在稳定活性期间,往往因接触少量的杂质而使活性明显下降甚至被破坏,这种现象称为催化剂

11、的中毒。一般认为是由于催化剂表面的活性中心被杂质占据而引起中毒。中毒分为暂时性中毒和永久性中毒两种。例如,对于合成氨反应中的铁催化剂,O2、CO、CO2和水蒸气等都能使催化剂中毒。但利用纯净的氢、氮混合气体通过中毒的催化剂时,催化剂的活性又能恢复,因此这种中毒是暂时性中毒。相反,含P、S、As的化合物则可使铁催化剂永久性中毒。催化剂中毒后,往往完全失去活性,这时即使再用纯净的氢、氮混合气体处理,活性也很难恢复。催化剂中毒会严重影响生产的正常进行。工业上为了防止催化剂中毒,要把反应物原料加以净化,以除去毒物,这样就要增加设备,提高成本。因此,研制具有较强抗毒能力的新型催化剂,是一个重要的课题。血

12、氨增高原因血氨清除不足肝内鸟氨酸循环合成尿素是机体清除氨的主要代谢途径。当供给鸟氨酸循环的ATP不足,催化鸟氨酸循环的有关酶的活性降低,其循环所需底物严重缺乏,以及肠道吸收的氨经门体分流直接进入循环等多个环节2作用,最终导致血氨的增高。血氨生成增多1.肠道产氨增多肝病致吸收不良,血液循环不畅、胆汁水泌不够,食物消化不良致大量细菌繁殖增生,作用于肠道积聚的蛋白质及尿素,使产氨明显增多。2.肾衰致血液中的尿素等非蛋白氮含量高于正常,因而弥散至肠腔内的尿素大大增加,使产氨增多。3.烦躁不安、震颤等肌肉活动增强,使肌肉中的腺苷酸分解代谢增强,也是血氨产生增多的原因之一。肠道PH降低尿液PH值升高尿液中

13、PH升高,则进入肾小管腔的NH3与H结合减少,则NH3以氨根离子的形式随尿排出的形式减少,致血氨升高。肠道PH降低,氨根离子易于H结合生成NH3,而不易随粪便排出,使其吸收增加,致血氨浓度升高。氨中毒机理1.氨能够干扰脑细胞的能量代谢氨抑制丙酮酸脱羧酶的活性,使乙酰CoA生成减少,影响三羧酸循环的正常进行;消耗大量酮戊二酸和还原型辅酶,造成ATP生成不足;氨与谷氨酸结合生成谷氨酰胺的过程中大量消耗ATP。总之,氨耗大是ATP,又使得脑细胞ATP生成减少以抑制脑细胞。2.脑内神经递质的改变氨引起脑内谷氨酸、Ach等兴奋神经递质的减少,又使谷氨酰胺、氨基丁酸等抑制性神经递质增多,从而造成对中枢神经

14、系统的抑制。3.对神经细胞的抑制作用NH3干扰神经细胞膜上的Na-K-ATP酶,使复极后膜离子转动障碍,导致膜电位改变和兴奋性异常;NH3与K有竞争作用,影响NaK在神经的细胞膜上的正常分布,从而干扰神经传导活动。综上,氨中毒主要抑制中枢神经系统,正常情况下,中枢神经系统能够抑制外周的低级中枢,当中枢神经系统受抑制,使得其对外周低级中枢的抑制作用减弱甚至消失,从而外周低级中枢兴奋,出现一系列如肌随意性兴奋、角弓反射及抽搐等本能反应。氨的职业危害与预防(1)吸入的危害表现。氨的刺激性是可靠的有害浓度报警信号。但由于嗅觉疲劳,长期接触后对低浓度的氨会难以察觉。吸入是接触的主要途径,吸入氨气后的中毒

15、表现主要有以下几个方面。轻度吸入氨中毒表现有鼻炎、咽炎、喉痛、发音嘶哑。氨进入气管、支气管会引起咳嗽、咯痰、痰内有血。严重时可咯血及肺水肿,呼吸困难、咯白色或血性泡沫痰,双肺布满大、中水泡音。患者有咽灼痛、咳嗽、咳痰或咯血、胸闷和胸骨后疼痛等。急性吸入氨中毒的发生多由意外事故如管道破裂、阀门爆裂等造成。急性氨中毒主要表现为呼吸道粘膜刺激和灼伤。其症状根据氨的浓度、吸入时间以及个人感受性等而轻重不同。急性轻度中毒:咽干、咽痛、声音嘶哑、咳嗽、咳痰,胸闷及轻度头痛,头晕、乏力,支气管炎和支气管周围炎。急性中度中毒上述症状加重,呼吸困难,有时痰中带血丝,轻度发绀,眼结膜充血明显,喉水肿,肺部有干湿性哕音。急性重度中毒:剧咳,咯大量粉红色泡沫样痰,气急、心悸、呼吸困难,喉水肿进一步加重,明显发绀,或出现急性呼吸窘迫综合症、较重的气胸和纵隔气肿等。严重吸入中毒可出现喉头水肿、声门狭窄以及呼吸道粘膜脱落,可造成气管阻塞,引起窒息。吸入高浓度的氨可直接影响肺毛细血管通透性而引起肺水肿,可诱发惊厥、抽搐、嗜睡、昏迷等意识障碍。个别病人吸入极浓的氨气可发生呼吸心跳停止。(2)皮肤和眼睛接触的危害表现。低浓度的氨对眼和潮湿的皮肤能

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 大杂烩/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号