模拟电子技术基础简明教程(第三版)杨素行-ppt幻灯片-第5章

上传人:F****n 文档编号:88151455 上传时间:2019-04-20 格式:PPT 页数:64 大小:2.01MB
返回 下载 相关 举报
模拟电子技术基础简明教程(第三版)杨素行-ppt幻灯片-第5章_第1页
第1页 / 共64页
模拟电子技术基础简明教程(第三版)杨素行-ppt幻灯片-第5章_第2页
第2页 / 共64页
模拟电子技术基础简明教程(第三版)杨素行-ppt幻灯片-第5章_第3页
第3页 / 共64页
模拟电子技术基础简明教程(第三版)杨素行-ppt幻灯片-第5章_第4页
第4页 / 共64页
模拟电子技术基础简明教程(第三版)杨素行-ppt幻灯片-第5章_第5页
第5页 / 共64页
点击查看更多>>
资源描述

《模拟电子技术基础简明教程(第三版)杨素行-ppt幻灯片-第5章》由会员分享,可在线阅读,更多相关《模拟电子技术基础简明教程(第三版)杨素行-ppt幻灯片-第5章(64页珍藏版)》请在金锄头文库上搜索。

1、第五章 集成运算放大电路,5.1 集成放大电路的特点,5.2 集成运放的主要技术指标,5.3 集成运放的基本组成部分,5.4 集成运放的典型电路,5.5 各类集成运放的性能特点,5.6 集成运放使用中的几个具体问题,5.1 集成放大电路的特点,集成电路简称 IC (Integrated Circuit),集成电路按其功能分,数字集成电路,模拟集成电路,模拟集成电路类型,集成运算放大器;集成功率放大器;集成高频放大器;集成中频放大器;集成比较器;集成乘法器;集成稳压器;集成数/模和模/数转换器等。,集成电路的外形,图 5.1.1 集成电路的外形,(a)双列直插式,(b)圆壳式,(c)扁平式,集成

2、运算放大电路特点:,1. 对称性好,适用于构成差分放大电路。,2. 集成电路中电阻,其阻值范围一般在几十欧到几十千欧之间,如需高阻值电阻时,要在电路上另想办法。,3. 在芯片上制作三极管比较方便,常常用三极管代替电阻(特别是大电阻)。,4. 在芯片上制作比较大的电容和电感非常困难,电路通常采用直接耦合电路方式。,5. 集成电路中的 NPN 、 PNP管的 值差别较大,通常 PNP 的 10 。,5.2 集成运放的主要技术指标,集成运算放大器的符号,一、开环差模电压增益 Aod,一般用对数表示,定义为,单位:分贝,理想情况 Aod 为无穷大; 实际情况 Aod 为 100 140 dB。,图 5

3、.2.1 运算放大器的符号,二、输入失调电压 UIO,三、输入失调电压温漂 UIO,定义:,为了使输出电压为零,在输入端所需要加的补偿电压。,一般运放:UIO 为 1 10 mV;,高质量运放:UIO 为 1 mV 以下。,定义:,一般运放为 每度 10 20 V;,高质量运放低于每度 0.5 V 以下;,四、输入失调电流 IIO,五、输入失调电流温漂 IIO,当输出电压等于零时,两个输入端偏置电流之差,即,定义:,一般运放为 几十 一百纳安;高质量的低于 1 nA。,定义:,一般运放为 每度几纳安;高质量的每度几十皮安。,六、输入偏置电流 IIB,七、差模输入电阻 rid,八、共模抑制比 K

4、CMR,定义:,输出电压等于零时,两个输入端偏置电流的平均值。,定义:,一般集成运放为几兆欧。,定义:,多数集成运放在 80 dB 以上,高质量的可达 160 dB。,九、最大共模输入电压 UIcm,输入端所能承受的最大共模电压。,十、最大差模输入电压 UIdm,反相输入端与同相输入端之间能够承受的最大电压。,十一、 - 3 dB带宽 fH,表示 Aod 下降 3 dB 时的频率。一般集成运放 fH 只有几赫至几千赫。,十二、 单位增益带宽 BWG,Aod 降至 0 dB 时的频率,此时开环差模电压放大倍数等于 1 。,十三、 转换速率 SR,额定负载条件下,输入一个大幅度的阶跃信号时,输出电

5、压的最大变化率。单位为 V / s 。,在实际工作中,输入信号的变化率一般不要大于集成运放的 SR 值。,其他技术指标还有:最大输出电压、静态功耗及输出电阻等。,5.3 集成运放的基本组成部分,实质上是一个具有高放大倍数的多级直接耦合放大电路。,图 5.3.1 集成运算的基本组成,5.3.1 偏置电路,向各放大级提供合适的偏置电路,确定各级静态工作点。,一、镜像电流源 (电流镜 Current Mirror),基准电流,由于 UBE1 = UBE2,VT1与 VT2 参数基本相同,则,IB1 = IB2 = IB;IC1 = IC2 = IC,所以,当满足 2 时,则,图 5.3.2,二、比例

6、电流源,由图可得,UBE1 + IE1R1 = UBE2 + IE2R2,由于 UBE1 UBE2 ,则,忽略基极电流,可得,两个三极管的集电极电流之比近似与发射极电阻的阻值成反比,故称为比例电流源。,图 5.3.3 比例电流源,三、微电流源,在镜像电流源的基础上接入电阻 Re。,引入Re使 UBE2 UBE1,且 IC2 IC1 ,即在 Re 值不大的情况下,得到一个比较小的输出电流 IC2 。,图 5.3.4 微电流源,基本关系,因二极管方程,若 IC1和 IC2 已知,可求出 Re。,图 5.3.4 微电流源,由式(5.3.2),由式(5.3.4),5.3.2 差分放大输入级,输入级大都

7、采用差分放大电路的形式。,电路形式,基本形式,长尾式,恒流源式,一、基本形式差分放大电路,1. 电路组成,假设电路完全对称,当 uId = 0,时,UCQ1 = UCQ2,UO = 0,图 5.3.6 差分放大电路的基本形式,2. 电压放大倍数,VT1 和 VT2 基极输入电压大小相等,极性相反,称为差模输入电压(uId)。,在差模信号作用下:,差模电压放大倍数为,3. 共模抑制比,差模输入电压 uId,共模输入电压 uIc (uIc大小相等,极性相同),共模电压放大倍数:,Ac 愈小愈好,而Ad 愈大愈好,图 5.3.7 共模输入电压,共模抑制比 KCMR,(1) KCMR 描述差分放大电路

8、对零点漂移的抑制能力。 KCMR愈大,抑制零漂能力愈强; (2) 理想情况下,电路参数完全对称,Ac = 0, KCMR = 。 (3) 基本形式差放电路每个三极管的集电极对地电压,其零漂与单管放大电路相同,丝毫没有改善。,二、长尾式差分放大电路,可减小每个管子输出端的温漂。,1. 电路组成,Re 称为“长尾电阻”。且引入共模负反馈。,Re 愈大,共模负反馈愈强。Ac 愈小。每个管子的零漂愈小。 对差模信号无负反馈。,图 5.3.8 长尾式差分放大电路,2. 静态分析,当 uId = 0 时,由于电路结构对称,故:,IBQ1 = IBQ2 = IBQ,ICQ1 = ICQ2 = ICQ ,UB

9、EQ1 = UBEQ2 = UBEQ,UCQ1 =UCQ2 = UCQ, 1= 2= ,IBQR + UBEQ + 2IEQRe = VEE,则,ICQ IBQ,(对地),图 5.3.8 长尾式差分放大电路,3. 动态分析,则,同理,图 5.3.8 长尾式差分放大电路的交流通路,图5.3.10 接有调零电位器的长尾差分电路,输出电压为,差模电压放大倍数为,差模输入电阻为,差模输出电阻为,三、恒流源式差分放大电路,用三极管代替“长尾式”电路的长尾电阻,即构成恒流源式差分放大电路,1. 电路组成,VT3:恒流管,作用:,能使 iC1、iC2基本上不随温度的变化而变化,从而抑制共模信号的变化。,图

10、5.3.13 恒流源式差分放大电路,2. 静态分析,当忽略 VT3 的基极电流时, Rb1 上的电压为,于是得到,图 5.3.13 恒流源式差分放大电路,3. 动态分析,由于恒流三极管相当于一个阻值很大的长尾电阻,它的作用也是引入一个共模负反馈,对差模电压放大倍数没有影响,所以与长尾式交流通路相同。,差模电压放大倍数为,差模输入电阻为,差模输出电阻为,四、差分放大电路的输入、输出接法,有四种不同的接法,差分输入、双端输出;,差分输入、单端输出;,单端输入、双端输出;,单端输入、单端输出。,1. 差分输入、双端输出,图 5.3.16(a) 差分输入、双端输出,2. 差分输入、单端输出,uO 约为

11、双端输出的一半,即,若由 VT2 集电极输出, uO 为“正”。,图 5.3.16(b) 差分输入、单端输出,3. 单端输入、双端输出,单端输入,则,当共模负反馈足够强时,,三极管仍然基本工作在差分状态,所以,图 5.3.16(c) 单端输入、双端输出,4. 单端输入、单端输出,若改从 VT2 集电极输出,则,这种接法比一般的单管放大电路具有较强的抑制零漂的能力。,图 5.3.16(d) 单端输入、单端输出,结 论,(1) 双端输出时,Ad 与单管 Au 基本相同;单端输出时,Ad 约为双端输出时的一半。 双端输出时,Ro = 2Rc;单端输出时, Ro = Rc 。 (2) 双端输出时,理想

12、情况下,KCMR ;单端输出时,共模抑制比不如双端输出高。 (3) 单端输出时,可以选择从不同的三极管输出,而使输出电压与输入电压反相或同相。 (4) 单端输出时,由于引入很强的共模负反馈,两个管子仍基本工作在差分状态。 (5) 单端输出时, Rid 2(R + rbe)。,差分放大电路四种接法的性能比较,Ad,Rid,Ro,差分放大电路四种接法的性能比较,特 性,1. Ad 与单管放大电路基本相同。 2.在理想情况下,KCMR。 3.适用于差分输入、双端输出,输入信号及负载的两端均不接地的情况。,1. Ad 约为双端输出时的一半。 2. 由于引入共模负反馈,仍有较高的KCMR。 3.适用于将

13、双端输入转换为单端输出。,1. Ad 与单管放大电路基本相同。 2.在理想情况下,KCMR。 3.适用于将单端输入转换为双端输出。,1. Ad 约为双端输出时的一半。 2.比单管放大电路具有较强的抑制零漂的能力。 3.适用于输入、输出均要求接地的情况。 4.选择不同管子输出,可使输出电压与输入电压反相或同相。,5.3.3 中间级,任务:提供足够大的电压放大倍数。,要求:本身具有较高的电压增益;具有较高的,一、有源负载,图 5.3.17 有源负载单管共射放大电路,VT1:放大三极管; VT2:有源负载; VT3、VT2 镜像电流源。,输入电阻;能向输出级提供较大的推动电流。,基准电流,有源负载的

14、差分放大电路,放大电路采用差分输入、单端输出; 工作电流由恒流源 I 决定; 输出电流 io = ic4 - ic2 = 2ic4,该电路有相当于双端输出时的 io ,在集成运放中的应用十分广泛。,图 5.3.18 有源负载的差分放大电路,5.3.4 输出级,一、互补对称电路,工作原理:,当输入正弦电压 uI 时,uI 0,VT1 导通,VT2 截止 iC1:+VCC VT1 RL 地,uI 0,VT2 导通,VT1 截止 iC2:地 RL VT2 -VCC,当 uI 为正弦电压时,iL 与 uO 基本上也是正弦波。,互补对称输出级,说明:,1. 互补对称电路工作在射极输出器状态,输出电阻低,

15、带负载能力强。 2. R1、R、R2、VD1、VD2 支路能够减小失真,改善波形。,交越失真,二、由复合管组成的功率输出级,互补对称电路,准互补对称电路,改进:,缺点:由于 VT3、VT4 类型不同,互补性差。,三、过载保护电路,二极管保护电路,保护元件:,VD3、VD4、Re1、Re2。,输出电流正常, VD3、VD4 截止,保护不起作用;,若 VT1 正向 IC1, URe1 ,VD3 导通, IB1 ,IC1 。输出电流无法增大,保护功率管 VT1 。,若 VT2 反向电流IC2, URe2 ,VD4 导通, IB2, IC2 。避免 VT2 电流过大。,图 5. 3. 19 过载保护电

16、路,三极管保护电路,保护元件:,工作原理与二极管保护原理类似。,VT3、VT4、Re1、Re2。, Re 愈大,则 IEm 愈小;, 温度升高, UD、 UBE 降低,Iem 减小。更有利于保护在高温下的集成运放。,图 5. 3. 19 过载保护电路,5.4 集成运放的典型电路,典型的集成运放,双极型集成运放 F007,CMOS 集成运放 C14573,一、引脚,5.4.1 双极型集成运放 F007,图 5.4.1 F007 的引脚及连接示意图,(a),(b)连接示意图,二、电路原理图,图 5.4.2 F007 电路原理图,1. 偏置电路,至输入级,至中间级,基准电流:,基准电流产生各放大级所需的偏置电流。,各路偏置电流的关系:,IREF,I11,IC10,I3, 4,IC9,IC8,IC12,IC13,微电流源,镜像电流源,输入级,镜像电流源,中间级,输出级,图 5.4.3 F007 的偏置电路,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > PPT模板库 > PPT素材/模板

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号