复变函数复习提纲

上传人:豆浆 文档编号:788560 上传时间:2017-05-14 格式:DOC 页数:13 大小:1.14MB
返回 下载 相关 举报
复变函数复习提纲_第1页
第1页 / 共13页
复变函数复习提纲_第2页
第2页 / 共13页
复变函数复习提纲_第3页
第3页 / 共13页
复变函数复习提纲_第4页
第4页 / 共13页
复变函数复习提纲_第5页
第5页 / 共13页
点击查看更多>>
资源描述

《复变函数复习提纲》由会员分享,可在线阅读,更多相关《复变函数复习提纲(13页珍藏版)》请在金锄头文库上搜索。

1、- 1 -复变函数复习提纲第一章 复数与复变函数(一)复数的概念1.复数的概念: , 是实数, . . zxiyRe,Imxzyz21i注:一般两个复数不比较大小,但其模(为实数)有大小.2.复数的表示1)模: ;2zxy2)幅角:在 时,矢量与 轴正向的夹角,记为 (多值函数) ;主值0xArgz是位于 中的幅角。argz(,3) 与 之间的关系如下:ctnyx当 ;0,xarz当 ;,garctn,0,yyxz4)三角表示: ,其中 ;注:中间一定是“+”cosinargz5)指数表示: ,其中 。izearz(二) 复数的运算1.加减法:若 ,则1122,zxiyzxiy121212zx

2、iy2.乘除法:1)若 ,则122,zxiyzxiy;2 1。121 1212122xiyizi xyxyi- 2 -2)若 , 则 ; 1212,iizez1212ize121ize3.乘幂与方根1) 若 ,则 。(cosin)izze(cosin)nnizze2) 若 ,则i(有 个相异的值)122cossin(0,12)nkkz n第二章 解析函数(三)复变函数1复变函数: ,在几何上可以看作把 平面上的一个点集 变到 平面上的一wfzzDw个点集 的映射.G2复初等函数指数函数: ,在 平面处处可导,处处解析;且 。注:cosinzxeyzzze是以 为周期的周期函数。 (注意与实函数

3、不同)zi对数函数: (多值函数) ;l(arg2)Lnzizk(0,12)主值: 。 (单值函数)lni的每一个主值分支 在除去原点及负实轴的 平面内处处解析,且 ;zzz1lnz注:负复数也有对数存在。 (与实函数不同)乘幂与幂函数: ;(0)bLnae(0)bLnze注:在除去原点及负实轴的 平面内处处解析,且 。z1bz三角函数: sincossin,cos,t,22ciiziizieegzt在 平面内解析,且i,cozino,z注:有界性 不再成立;(与实函数不同)sn1,sz- 3 -双曲函数 ;,22zzeeshch奇函数, 是偶函数。 在 平面内解析 。szcz,sz,shzc

4、zsh(四)解析函数的概念1复变函数的导数1)点可导: = ;0fz00limfzfz2)区域可导: 在区域内点点可导。f2解析函数的概念1)点解析: 在 及其 的邻域内可导,称 在 点解析;fz0zfz02)区域解析: 在区域内每一点解析,称 在区域内解析;3)若 在 点不解析,称 为 的奇点;()fz00zf3解析函数的运算法则:解析函数的和、差、积、商(除分母为零的点)仍为解析函数;解析函数的复合函数仍为解析函数;(五)函数可导与解析的充要条件1函数可导的充要条件: 在 可导,fzuxyivzxiy和 在 可微,且在 处满足 条件:,uxy,v, CR此时, 有 。,xuvfzix2函数

5、解析的充要条件: 在区域内解析,fzuyi和 在 在 内可微,且满足 条件:,uxy,v,xDCD;,此时 。uvfzix- 4 -注意 : 若 在区域 具有一阶连续偏导数,则 在区域,uxyvD,uxyv内是可微的。因此在使用充要条件证明时,只要能说明 具有一阶连续偏导且满D,足 条件时,函数 一定是可导或解析的。CR()fzuiv3函数可导与解析的判别方法1)利用定义 (题目要求用定义,如第二章习题 1)2)利用充要条件 (函数以 形式给出,如第二章习题 2),fzuxyiv3)利用可导或解析函数的四则运算定理。 (函数 是以 的形式给出,如第二章习题fz3)(六)解析函数与调和函数的关系

6、1调和函数的概念:若二元实函数 在 内有二阶连续偏导数且满足(,)xyD, 为 内的调和函数。20xy(,)xy2解析函数与调和函数的关系 解析函数 的实部 与虚部 都是调和函数,并称虚部 为实部 的共轭fzuivvvu调和函数。 两个调和函数 与 构成的函数 不一定是解析函数;但是若 如果满v()fzuiv,v足柯西黎曼方程,则 一定是解析函数。ui3已知解析函数 的实部或虚部,求解析函数 的方法。fzfzuiv1)偏微分法:若已知实部 ,利用 条件,得 ;,uxyCR,xy对 两边积分,得 (*)vyxvdg再对(*)式两边对 求偏导,得 (*) uygxx- 5 -由 条件, ,得 ,可

7、求出 ;CRuvyxudygxyxgx代入(*)式,可求得虚部 。 g2)线积分法:若已知实部 ,利用 条件可得,uxyCR,故虚部为 ;vdxdyd0,xyuvdycx由于该积分与路径无关,可选取简单路径(如折线)计算它,其中 与 是解0,析区域中的两点。3)不定积分法:若已知实部 ,根据解析函数的导数公式和 条件得知, ,uxyCRuvfziixy将此式右端表示成 的函数 ,由于 仍为解析函数, zUzfz fzUdzc注:若已知虚部 也可用类似方法求出实部v.u第三章 复变函数的积分(七)复变函数积分的概念与性质1 复变函数积分的概念: , 是光滑曲线。1limnkckfzdfzc注:复

8、变函数的积分实际是复平面上的线积分。2 复变函数积分的性质1) ( 与 的方向相反) ;1ccfzdfzd1c2) 是常数; ,ccgfzgzd3) 若曲线 由 与 连接而成,则 。12 12cffzd3复变函数积分的一般计算法1)化为线积分: ;(常用于理论证明)cccfzduxvdyixudy- 6 -2)参数方法:设曲线 : ,其中 对应曲线 的起点, 对应曲线c()zttc的终点,则 。ccfdfzd(八)关于复变函数积分的重要定理与结论1柯西积分定理:设 在单连域 内解析, 为 内任一闭曲线,则 fzBc0cfzdA2复合闭路定理: 设 在多连域 内解析, 为 内任意一条简单闭曲线,

9、fzD是 内的简单闭曲线,它们互不包含互不相交,并且以 为边界的12,nc c 12,nc区域全含于 内,则D 其中 与 均取正向;cfzdA1,kncfzdck ,其中 由 及 所组成的复合闭路。0f1(,2)kn3闭路变形原理 : 一个在区域 内的解析函数 沿闭曲线 的积分,不因 在Dfzcc内作连续变形而改变它的值,只要在变形过程中 不经过使 不解析的奇点。Dcf4解析函数沿非闭曲线的积分: 设 在单连域 内解析, 为 在 内的一fzBGzB个原函数,则 212112(,)zfdGz说明:解析函数 沿非闭曲线的积分与积分路径无关,计算时只要求出原函数即可。5. 柯西积分公式:设 在区域

10、内解析, 为 内任一正向简单闭曲线, 的内部完fzDcc全属于 , 为 内任意一点,则D0c002cfzdifzA6高阶导数公式:解析函数 的导数仍为解析函数,它的 阶导数为fzn0102(1,2)()!nncidfz 其中 为 的解析区域 内围绕 的任何一条正向简单闭曲线,而且它的内部完全属cfzD0于 。D- 7 -7重要结论:。 ( 是包含 的任意正向简单闭曲线)02,11()ncindzAc0z8复变函数积分的计算方法1)若 在区域 内处处不解析,用一般积分法fzDcfzdfztdt2)设 在区域 内解析, 是 内一条正向简单闭曲线,则由柯西积分定理, c 0cfzA 是 内的一条非闭

11、曲线, 对应曲线 的起点和终点,则有D12,z21 1zcfdfFz3)设 在区域 内不解析 曲线 内仅有一个奇点: ( 在 内解析)c000102()!c nncfzdifzffzA()fzc 曲线 内有多于一个奇点: ( 内只有一个奇点 )ccfd1kcfzdkckz或: (留数基本定理)12Re(),nkkcfzdisfzA 若被积函数不能表示成 ,则须改用第五章留数定理来计算。1()nofz第四章 解析函数的级数表示(九)复数项级数1复数列的极限1)复数列 ( )收敛于复数 的充要条件为 nnzxiy1,2 00zxyi(同时成立)00lim,lnx2)复数列 收敛 实数列 同时收敛。

12、nz,nxy- 8 -2复数项级数1)复数项级数 收敛的充要条件是级数 与 同时收敛;0()nnzxiy0nx0ny2)级数收敛的必要条件是 。lim0nz注:复数项级数的敛散性可以归纳为两个实数项级数的敛散性问题的讨论。(十)幂级数的敛散性1幂级数的概念:表达式 或 为幂级数。00()nnczncz2幂级数的敛散性1)幂级数的收敛定理阿贝尔定理(Abel):如果幂级数 在 处收敛,那么对满足 的一切 ,该数绝对收敛;0ncz00zz如果在 处发散,那么对满足 的一切 ,级数必发散。0z2)幂级数的收敛域圆域幂级数在收敛圆域内,绝对收敛;在圆域外,发散;在收敛圆的圆周上可能收敛;也可能发散。3

13、)收敛半径的求法:收敛圆的半径称收敛半径。 比值法 如果 ,则收敛半径 ;1lim0nc1R 根值法 ,则收敛半径 ;lin 如果 ,则 ;说明在整个复平面上处处收敛;0R如果 ,则 ;说明仅在 或 点收敛;0z注:若幂级数有缺项时,不能直接套用公式求收敛半径。 (如 )20ncz3幂级数的性质1)代数性质:- 9 -设 的收敛半径分别为 与 ,记 ,00,nnazb1R212min,R则当 时, (线性运算)R000()nnnnabzazbz(乘积运算)01000()()()nn nnz a2) 复合性质:设当 时, ,当 时, 解析且r0nfazRgz,则当 时, 。gzzR0nnfgg3) 分析运算性质:设幂级数 的收敛半径为 ,则0naR 其和函数 是收敛圆内的解析函数;0nfz 在收敛圆内可逐项求导,收敛半径不变;且 10nfzazR 在收敛圆内可逐项求积,收敛半径不变; 100z nnfdz(十一)幂函数的泰勒展开1. 泰勒展开:设函数 在圆域 内解析,则在此圆域内 可以展开成幂fz0zRfz级数 ;并且此展开式是唯一的。00!nnfz注:若 在 解析,则 在 的泰勒展开式成立的圆域的收敛半径 ;f0fz0 0Rza其中 为从 到 的距 最近一个奇点 之间的距离。 Rzf0a2常用函数在 的泰勒展开式01) 2301!nznzze z2)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 教学课件 > 高中课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号