《永春县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析》由会员分享,可在线阅读,更多相关《永春县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(16页珍藏版)》请在金锄头文库上搜索。
1、精选高中模拟试卷永春县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 下列函数中,为奇函数的是( )Ay=x+1By=x2Cy=2xDy=x|x|2 设集合M=x|x1,N=x|xk,若MN,则k的取值范围是( )A(,1B1,+)C(1,+)D(,1)3 已知全集U=0,1,2,3,4,集合M=2,3,4,N=0,1,4,则集合0,1可以表示为( )AMNB(UM)NCM(UN)D(UM)(UN)4 已知函数f(x)=x(1+a|x|)设关于x的不等式f(x+a)f(x)的解集为A,若,则实数a的取值范围是( )ABCD5 若偶函数f(
2、x)在(,0)内单调递减,则不等式f(1)f(lg x)的解集是( )A(0,10)B(,10)C(,+)D(0,)(10,+)6 已知函数f(x)=2x+cosx,设x1,x2(0,)(x1x2),且f(x1)=f(x2),若x1,x0,x2成等差数列,f(x)是f(x)的导函数,则( )Af(x0)0Bf(x0)=0Cf(x0)0Df(x0)的符号无法确定7 现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( )A232B252C472D4848 执行如图所以的程序框图,如果输入a=5,那么输
3、出n=( )A2B3C4D59 函数y=2|x|的定义域为a,b,值域为1,16,当a变动时,函数b=g(a)的图象可以是( )ABCD10一个四边形的斜二侧直观图是一个底角为45,腰和上底的长均为1的等腰梯形,那么原四边形的面积是( )A2+B1+CD11在正方体中, 分别为的中点,则下列直线中与直线 相交 的是( ) A直线 B直线 C. 直线 D直线12若函数y=x2+(2a1)x+1在区间(,2上是减函数,则实数a的取值范围是( )A,+)B(,C,+)D(,二、填空题13等比数列an的公比q=,a6=1,则S6=14已知a=(cosxsinx)dx,则二项式(x2)6展开式中的常数项
4、是15如图所示,正方体ABCDABCD的棱长为1,E、F分别是棱AA,CC的中点,过直线EF的平面分别与棱BB、DD交于M、N,设BM=x,x0,1,给出以下四个命题:平面MENF平面BDDB;当且仅当x=时,四边形MENF的面积最小;四边形MENF周长l=f(x),x0,1是单调函数;四棱锥CMENF的体积v=h(x)为常函数;以上命题中真命题的序号为16设,在区间上任取一个实数,曲线在点处的切线斜率为,则随机事件“”的概率为_.17设f(x)是定义在R上的周期为2的函数,当x1,1)时,f(x)=,则f()=18某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都
5、不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为三、解答题19(本小题满分12分)已知等差数列的前项和为,且,(1)求的通项公式和前项和;(2)设是等比数列,且,求数列的前n项和【命题意图】本题考查等差数列与等比数列的通项与前项和、数列求和等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及分类讨论思想、方程思想、分组求和法的应用20(本题12分)已知数列的首项,通项(,为常数),且成等差数列,求:(1)的值;(2)数列前项和的公式.21(本小题满分10分)选修4-1:几何证明选讲1111如图,点为圆上一点,为圆的切线,为圆的直径,.(1)若交圆于点,求的长;(2)若连接并延长交
6、圆于两点,于,求的长.22已知函数f(x)=xalnx(aR)(1)当a=2时,求曲线y=f(x)在点A(1,f(1)处的切线方程;(2)求函数f(x)的极值23已知函数f(x)=cosx(sinx+cosx)(1)若0,且sin=,求f()的值;(2)求函数f(x)的最小正周期及单调递增区间24如图,在三棱柱中,(1)求证:平面;(2)若,求三棱锥的体积永春县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:由于y=x+1为非奇非偶函数,故排除A;由于y=x2为偶函数,故排除B;由于y=2x为非奇非偶函数,故排除C;由于y=x
7、|x|是奇函数,满足条件,故选:D【点评】本题主要考查函数的奇偶性的判断,属于基础题2 【答案】B【解析】解:M=x|x1,N=x|xk,若MN,则k1k的取值范围是1,+)故选:B【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题3 【答案】B【解析】解:全集U=0,1,2,3,4,集合M=2,3,4,N=0,1,4,UM=0,1,N(UM)=0,1,故选:B【点评】本题主要考查集合的子交并补运算,属于基础题4 【答案】 A【解析】解:取a=时,f(x)=x|x|+x,f(x+a)f(x),(x)|x|+1x|x|,(1)x0时,解得x0;(2)0x时,解得0;(3)x时,解得,综
8、上知,a=时,A=(,),符合题意,排除B、D;取a=1时,f(x)=x|x|+x,f(x+a)f(x),(x+1)|x+1|+1x|x|,(1)x1时,解得x0,矛盾;(2)1x0,解得x0,矛盾;(3)x0时,解得x1,矛盾;综上,a=1,A=,不合题意,排除C,故选A【点评】本题考查函数的单调性、二次函数的性质、不等式等知识,考查数形结合思想、分类讨论思想,考查学生分析解决问题的能力,注意排除法在解决选择题中的应用5 【答案】D【解析】解:因为f(x)为偶函数,所以f(x)=f(|x|),因为f(x)在(,0)内单调递减,所以f(x)在(0,+)内单调递增,由f(1)f(lg x),得|
9、lg x|1,即lg x1或lg x1,解得x10或0x故选:D【点评】本题考查了函数的单调性与奇偶性的综合应用,在解对数不等式时注意对数的真数大于0,是个基础题6 【答案】 A【解析】解:函数f(x)=2x+cosx,设x1,x2(0,)(x1x2),且f(x1)=f(x2),存在x1ax2,f(a)=0,解得a=,假设x1,x2在a的邻域内,即x2x10,f(x)的图象在a的邻域内的斜率不断减少小,斜率的导数为正,x0a,又xx0,又xx0时,f(x)递减,故选:A【点评】本题考查导数的性质的应用,是难题,解题时要认真审题,注意二阶导数和三阶导数的性质的合理运用7 【答案】 C【解析】【专
10、题】排列组合【分析】不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有种取法,由此可得结论【解答】解:由题意,不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有种取法,故所求的取法共有=5601672=472故选C【点评】本题考查组合知识,考查排除法求解计数问题,属于中档题8 【答案】B【解析】解:a=5,进入循环后各参数对应值变化如下表: p 15 20 结束q525n23结束运行的时候n=3故选:B【点评】本题考查了程序框图的应用,考查了条件结构和循环结构的知识点解题的关键是理解题设中语句的意义,从中得出算法,由算法求出输出的结果
11、属于基础题9 【答案】B【解析】解:根据选项可知a0a变动时,函数y=2|x|的定义域为a,b,值域为1,16,2|b|=16,b=4故选B【点评】本题主要考查了指数函数的定义域和值域,同时考查了函数图象,属于基础题10【答案】A【解析】解:四边形的斜二侧直观图是一个底角为45,腰和上底的长均为1的等腰梯形,原四边形为直角梯形,且CD=CD=1,AB=OB=,高AD=20D=2,直角梯形ABCD的面积为,故选:A11【答案】D【解析】试题分析:根据已满治安的概念可得直线都和直线为异面直线,和在同一个平面内,且这两条直线不平行;所以直线和相交,故选D.考点:异面直线的概念与判断.12【答案】B【
12、解析】解:函数y=x2+(2a1)x+1的图象是方向朝上,以直线x=为对称轴的抛物线又函数在区间(,2上是减函数,故2解得a故选B二、填空题13【答案】21 【解析】解:等比数列an的公比q=,a6=1,a1()5=1,解得a1=32,S6=21故答案为:2114【答案】240 【解析】解:a=(cosxsinx)dx=(sinx+cosx)=11=2,则二项式(x2)6=(x2+)6展开始的通项公式为Tr+1=2rx123r,令123r=0,求得r=4,可得二项式(x2)6展开式中的常数项是24=240,故答案为:240【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题15【答案】 【解析】解:连结BD,BD,则由正方体的性质可知,EF平面BDDB