元线性回归模型的参数估计模型

上传人:tia****nde 文档编号:69636499 上传时间:2019-01-14 格式:PPT 页数:124 大小:1.29MB
返回 下载 相关 举报
元线性回归模型的参数估计模型_第1页
第1页 / 共124页
元线性回归模型的参数估计模型_第2页
第2页 / 共124页
元线性回归模型的参数估计模型_第3页
第3页 / 共124页
元线性回归模型的参数估计模型_第4页
第4页 / 共124页
元线性回归模型的参数估计模型_第5页
第5页 / 共124页
点击查看更多>>
资源描述

《元线性回归模型的参数估计模型》由会员分享,可在线阅读,更多相关《元线性回归模型的参数估计模型(124页珍藏版)》请在金锄头文库上搜索。

1、第二章 经典单方程计量经济学模型: 一元线性回归模型,回归分析概述 一元线性回归模型的参数估计 一元线性回归模型的统计检验 一元线性回归模型的应用:预测 实例,2.1 回归分析概述,一、变量间的关系及回归分析的基本概念 二、总体回归函数(PRF) 三、随机扰动项 四、样本回归函数(SRF),一、变量间的关系及回归分析的基本概念,1. 变量间的关系 (1)确定性关系或函数关系:研究的是确定现象非随机变量间的关系。,(2)统计依赖或相关关系:研究的是非确定现象随机变量间的关系。,对变量间统计依赖关系的考察主要是通过相关分析(correlation analysis)或回归分析(regression

2、 analysis)来完成的,注意 不线性相关并不意味着不相关。 有相关关系并不意味着一定有因果关系。 回归分析/相关分析研究一个变量对另一个(些)变量的统计依赖关系,但它们并不意味着一定有因果关系。 相关分析对称地对待任何(两个)变量,两个变量都被看作是随机的。回归分析对变量的处理方法存在不对称性,即区分应变量(被解释变量)和自变量(解释变量):前者是随机变量,后者不是。,2. 回归分析的基本概念 回归分析(regression analysis)是研究一个变量关于另一个(些)变量的具体依赖关系的计算方法和理论。 其目的在于通过后者的已知或设定值,去估计和(或)预测前者的(总体)均值。 被解

3、释变量(Explained Variable)或应变量(Dependent Variable)。 解释变量(Explanatory Variable)或自变量(Independent Variable)。,回归分析构成计量经济学的方法论基础,其主要内容包括: (1)根据样本观察值对经济计量模型参数进行估计,求得回归方程; (2)对回归方程、参数估计值进行显著性检验; (3)利用回归方程进行分析、评价及预测。,二、总体回归函数,回归分析关心的是根据解释变量的已知或给定值,考察被解释变量的总体均值,即当解释变量取某个确定值时,与之统计相关的被解释变量所有可能出现的对应值的平均值。,例2.1:一个假

4、想的社区有100户家庭组成,要研究该社区每月家庭消费支出Y与每月家庭可支配收入X的关系。 即如果知道了家庭的月收入,能否预测该社区家庭的平均月消费支出水平。 为达到此目的,将该100户家庭划分为组内收入差不多的10组,以分析每一收入组的家庭消费支出。,由于不确定因素的影响,对同一收入水平X,不同家庭的消费支出不完全相同; 但由于调查的完备性,给定收入水平X的消费支出Y的分布是确定的,即以X的给定值为条件的Y的条件分布(Conditional distribution)是已知的,例如:P(Y=561|X=800)=1/4。,因此,给定收入X的值Xi,可得消费支出Y的条件均值(conditiona

5、l mean)或条件期望(conditional expectation):E(Y|X=Xi)。 该例中:E(Y | X=800)=605 描出散点图发现:随着收入的增加,消费“平均地说”也在增加,且Y的条件均值均落在一根正斜率的直线上。这条直线称为总体回归线。,在给定解释变量Xi条件下被解释变量Yi的期望轨迹称为总体回归线(population regression line),或更一般地称为总体回归曲线(population regression curve)。,称为(双变量)总体回归函数(population regression function, PRF)。,相应的函数:,含义:回归

6、函数(PRF)说明被解释变量Y的平均状态(总体条件期望)随解释变量X变化的规律。,函数形式:可以是线性或非线性的。,例2.1中,将居民消费支出看成是其可支配收入的线性函数时:,为一线性函数。其中,0,1是未知参数,称为回归系数(regression coefficients)。,三、随机扰动项,总体回归函数说明在给定的收入水平Xi下,该社区家庭平均的消费支出水平。 但对某一个别的家庭,其消费支出可能与该平均水平有偏差。 称为观察值围绕它的期望值的离差(deviation),是一个不可观测的随机变量,又称为随机干扰项(stochastic disturbance)或随机误差项(stochasti

7、c error)。,例2.1中,给定收入水平Xi ,个别家庭的支出可表示为两部分之和:(1)该收入水平下所有家庭的平均消费支出E(Y|Xi),称为系统性(systematic)或确定性(deterministic)部分;(2)其他随机或非确定性(nonsystematic)部分i。,称为总体回归函数(PRF)的随机设定形式。表明被解释变量除了受解释变量的系统性影响外,还受其他因素的随机性影响。由于方程中引入了随机项,成为计量经济学模型,因此也称为总体回归模型。,随机误差项主要包括下列因素的影响:,1)代表未知的影响因素; 2)代表残缺数据; 3)代表数据观测误差; 4)代表模型设定误差;,1.

8、理论的含糊性 2.数据的欠缺 3.节省原则,随机误差项产生的原因:,四、样本回归函数(SRF),问题:能从一次抽样中获得总体的近似的信息吗?如果可以,如何从抽样中获得总体的近似信息? 例2.2:在例2.1的总体中有如下一个样本,能否从该样本估计总体回归函数PRF?,回答:能,该样本的散点图(scatter diagram):,画一条直线以尽好地拟合该散点图,由于样本取自总体,可以该直线近似地代表总体回归线。该直线称为样本回归线(sample regression lines)。,记样本回归线的函数形式为:,称为样本回归函数(sample regression function,SRF)。,注意

9、:这里将样本回归线看成总体回归线的近似替代,则,样本回归函数的随机形式/样本回归模型:,同样地,样本回归函数也有如下的随机形式:,由于方程中引入了随机项,成为计量经济模型,因此也称为样本回归模型(sample regression model)。,回归分析的主要目的:根据样本回归函数SRF,估计总体回归函数PRF。,即,根据,估计,注意:这里PRF可能永远无法知道。,2.2 一元线性回归模型的参数估计,一、一元线性回归模型的基本假设 二、参数的普通最小二乘估计(OLS) 三*、参数估计的最大或然法(ML) 四、最小二乘估计量的性质 五、参数估计量的概率分布及随机干 扰项方差的估计,说 明,单方

10、程计量经济学模型分为两大类:线性模型和非线性模型 线性模型中,变量之间的关系呈线性关系 非线性模型中,变量之间的关系呈非线性关系 一元线性回归模型:只有一个解释变量,i=1,2,n,Y为被解释变量,X为解释变量,0与1为待估参数, 为随机干扰项,回归分析的主要目的是要通过样本回归函数(模型)SRF尽可能准确地估计总体回归函数(模型)PRF。 估计方法有多种,其中最广泛使用的是普通最小二乘法(ordinary least squares, OLS)。 为保证参数估计量具有良好的性质,通常对模型提出若干基本假设。 实际这些假设与所采用的估计方法紧密相关。,一、线性回归模型的基本假设,假设1. 解释

11、变量X是确定性变量,不是随机变量; 假设2. 随机误差项具有零均值、同方差和不序列相关性: E(i)=0 i=1,2, ,n Var (i)=2 i=1,2, ,n Cov(i, j)=0 ij i,j= 1,2, ,n,假设3. 随机误差项与解释变量X之间不相关: Cov(Xi , i )=0 i=1,2, ,n 假设4. 服从零均值、同方差、零协方差的正态分布 i N(0, 2 ) i=1,2, ,n,如果假设1、2满足,则假设3也满足; 如果假设4满足,则假设2也满足。,注意:,以上假设也称为线性回归模型的经典假设或高斯(Gauss)假设,满足该假设的线性回归模型,也称为经典线性回归模型

12、(Classical Linear Regression Model, CLRM)。,另外,在进行模型回归时,还有两个暗含的假设:,假设5. 随着样本容量的无限增加,解释变量X的样本方差趋于一有限常数。即,假设6. 回归模型是正确设定的,假设5旨在排除时间序列数据出现持续上升或下降的变量作为解释变量,因为这类数据不仅使大样本统计推断变得无效,而且往往产生所谓的伪回归问题(spurious regression problem)。 假设6也被称为模型没有设定偏误(specification error) 。,重要提示,几乎没有哪个实际问题能够同时满足所有基本假设; 通过模型理论方法的发展,可以克

13、服违背基本假设带来的问题; 违背基本假设问题的处理构成了单方程线性计量经济学理论方法的主要内容: 异方差问题(违背同方差假设) 序列相关问题(违背序列不相关假设) 多重共线性问题(违背解释变量不相关假设) 随机解释变量(违背解释变量确定性假设),OLS(Ordinary Least Square) 方法的由来,1889年F.Gallton和他的朋友K.Pearson收集了上千个家庭的身高、臂长和腿长的记录 企图寻找出儿子们身高与父亲们身高之间关系的具体表现形式 下图是根据1078个家庭的调查所作的散点图(略图),从图上虽可看出,个子高的父亲确有生出个子高的儿子的倾向,同样地,个子低的父亲确有生

14、出个子低的儿子的倾向。得到的具体规律如下: 后人将此种方法普遍用于寻找变量之间的规律,最小二乘法的思路,1为了精确地描述Y与X之间的关系,必须使用这两个变量的每一对观察值(n组观察值),才不至于以点概面(作到全面)。 2Y与X之间是否是直线关系(用协方差或相关系数判断)?若是,可用一条直线描述它们之间的关系。 3在Y与X的散点图上画出直线的方法很多。 任务?找出一条能够最好地描述Y与X(代表所有点)之间的直线。 4什么是最好?找出判断“最好”的原则。 最好指的是找一条直线使得所有这些点到该直线的纵向距离的和(平方和)最小实际与理论抽象最接近。,纵向距离是度量实际值与拟合值 是否相符的有效手段,

15、点到直线的距离点到直线的垂直线的长度。 横向距离点沿(平行)X轴方向到直线的距离。 纵向距离点沿(平行)Y轴方向到直线的距离。也就是实际观察点的Y坐标减去根据直线方程计算出来的Y的拟合值。 实际值-拟合值=残差(误差),最小二乘法的数学原理,纵向距离是Y的实际值与拟合值之差,差异大拟合不好,差异小拟合好,所以称为残差、拟合误差或剩余。 将所有纵向距离平方后相加,即得误差平方和,“最好”直线就是使误差平方和最小的直线。拟合直线在总体上最接近实际观测点。 于是可以运用求极值的原理,将求最好拟合直线问题转换为求误差平方和最小的问题。,二、参数的普通最小二乘估计(OLS),给定一组样本观测值(Xi,

16、Yi)(i=1,2,n)要求样本回归函数尽可能好地拟合这组值. 普通最小二乘法(Ordinary least squares, OLS)给出的判断标准是:二者之差的平方和,最小。,方程组(*)称为正规方程组(normal equations)。,记,上述参数估计量可以写成:,称为OLS估计量的离差形式(deviation form)。 由于参数的估计结果是通过最小二乘法得到 的,故称为普通最小二乘估计量(ordinary least squares estimators)。,顺便指出 ,记,则有,可得,(*)式也称为样本回归函数的离差形式。,(*),注意: 在计量经济学中,往往以小写字母表示对均值的离差。,三*、参数估计的最大或然法(ML),最大或然法(Maximum Likelihood,简称ML),也称最大似然法,是不同于最小二乘法的另一种参数估计方法,是从最大或然原理出发发展起来的其他估计方法的基础。 基本原理: 对于最大

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号