中职课程汽车电控发动机构造及维修(燃油供给系统)

上传人:第*** 文档编号:61890542 上传时间:2018-12-14 格式:PPT 页数:116 大小:2.34MB
返回 下载 相关 举报
中职课程汽车电控发动机构造及维修(燃油供给系统)_第1页
第1页 / 共116页
中职课程汽车电控发动机构造及维修(燃油供给系统)_第2页
第2页 / 共116页
中职课程汽车电控发动机构造及维修(燃油供给系统)_第3页
第3页 / 共116页
中职课程汽车电控发动机构造及维修(燃油供给系统)_第4页
第4页 / 共116页
中职课程汽车电控发动机构造及维修(燃油供给系统)_第5页
第5页 / 共116页
点击查看更多>>
资源描述

《中职课程汽车电控发动机构造及维修(燃油供给系统)》由会员分享,可在线阅读,更多相关《中职课程汽车电控发动机构造及维修(燃油供给系统)(116页珍藏版)》请在金锄头文库上搜索。

1、第二章 燃油系统,第二节 燃油泵控制电路测试,诊断与维修,第一节 燃油供给系统性能测试、诊断与维修,第一节 燃油供给系统性能测试、诊断与维修,一 任务引入 二 任务分析 三 相关知识 四 任务实施,学习目标: 1.掌握燃油供给系统组成、结构、工作原理; 2.掌握燃油供给系统压力及其变化规律; 3.能够进行燃油压力测试,并根据测试结果进行故障诊断与排除。,一 任务引入 燃油供给系统的作用是将燃油从燃油箱中泵出,并经过滤清、调压后提供给喷油器,然后再由喷油器喷入发动机参加燃烧。如果该系统发生阻塞、泄漏、供油中断、供油压力失常(压力过高或过低)等故障,必然引起发动机燃料供给的失常,从而造成发动机动力

2、不足、加速不良、排气冒黑烟、燃油消耗过大、不能起动等故障现象,此时,往往需要对燃油供给系统进行测试、诊断和维修。,二 任务分析 燃油供给系统一般由燃油箱、电动燃油泵、燃油滤清器、压力缓冲器、油压调节器、喷油器等零部件组成,如图2-1所示。其中,燃油泵磨损或卡滞、燃油滤清器阻塞等会引起供油压力下降或中断;燃油压力缓冲器和油压调节器失常,会引起供油压力过高、过低或不稳。可见,通过测试供油系统的压力可以诊断供油系统的故障。,三 相关知识 1.燃油供给系统的结构与工作原理 2.燃油供给系统中各零部件的结构及工作原理,1.燃油供给系统的结构与工作原理 燃油箱中的燃油经电动燃油泵加压后被泵出,经燃油滤清器

3、过滤后再提供给各缸的喷油器,如图2-2所示。,为了消除管路中燃油压力的波动,有些系统中装有压力缓冲器(单独安装在管路上或与电动燃油泵一体设置于燃油出口处);为了确保喷油器喷嘴内外的压力差维持恒定,从而确保喷油器的喷油量不受燃油压力的影响,即确保喷油量仅受喷油时间的控制,系统中都装有燃油压力调节器。一般情况下,经燃油压力调节器调节后,喷油器喷嘴内外的压力差维持在0.3MPa左右不变(也有个别车型为0.45MPa左右,例如奥迪汽车)。,喷油器装于各缸进气道上,对着各缸的进气门附近喷油,喷油量取决于喷油持续时间,而喷油持续时间则受ECU的控制。 某些较为先进的现代汽车发动机采用了缸内喷射技术,即将燃

4、油直接喷入燃烧室的内部,此时,系统中往往还需要二次加压泵,将电动燃油泵提供的低压燃油变为高压燃油后再提供给缸内喷射器。,对于部分老款汽车而言,由于采用的是模拟式ECU,其控制功能有限,所以在发动机进气总管上装有冷起动喷油器,在发动机水套上还装有“温度-时间开关”,冷起动喷油器与温度-时间开关联合工作,确保冷起动时对混合气进行适当的加浓。,但对于现代汽车而言,已经广泛使用了数字式ECU,其控制功能已经大为完善,冷起动加浓等功能已经完全可以由ECU通过控制喷油器来实现,所以现代汽车已不再使用冷起动喷油器与温度 -时间开关。 关于电动燃油泵的控制电路和喷油器的结构与控制电路等问题,将在本书其他课题中

5、介绍。,2.燃油供给系统中各零部件的结构及工作原理 1)电动燃油泵 2)燃油压力调节器及系统油压变化规律 3)燃油压力缓冲器 4)燃油滤清器,1)电动燃油泵 滚柱式燃油泵 齿轮泵 涡轮泵 电动燃油泵通常装于燃油箱内部,主要由油泵、电动机、安全阀、止回阀和外壳等组成,如图2-3所示。其中,油泵是电动燃油泵的主体,根据其结构的不同,又可分为滚柱泵、齿轮泵、涡轮泵、侧槽泵等形式。,所有形式的电动燃油泵出油口都设有止回阀,进油腔和出油腔之间都设有限压阀。止回阀用于防止燃油倒流,可使发动机熄火时油路保持一定的残余压力,以减少气阻,并确保下次发动机能够顺利起动;限压阀则用于限制系统的最高油压,当油压达到一

6、定值(一般为 0.40.5MPa)时,限压阀打开进行泄压,以防止油路发生阻塞等意外情况时管路压力过高、油泵负荷过大而烧坏油泵。另外,泵出的燃油流经电动机的内部,对电动机起润滑和冷却作用。 燃油泵入口处一般都装有燃油泵滤清器,用于对燃油进行初步过滤,避免一些大的杂质进入燃油系统。,滚柱式燃油泵的结构如图2-4所示,主要由壳体、偏心布置的带槽转子以及装于槽内的滚柱等组成。当偏心转子在电动机驱动下旋转时,滚柱因离心力作用而紧靠壳体内壁,每两个滚柱之间形成一个油腔。随着转子的旋转,一边油腔由小变大,产生真空而形成吸油过程;另一边的油腔容积由大变小,产生高压而形成排油过程。,齿轮泵 齿轮式燃油泵的结构如

7、图2-5所示,主要由壳体、泵套、带外齿的主动齿轮、带内齿的从动齿轮等组成。主动齿轮由电动机带动,从动齿轮在泵套内可自由转动。 主、从动齿轮齿数不同,但在旋转过程中,内、外齿廓线始终保持接触,从而形成多个工作腔。在主、从动齿轮旋转的过程中,这些工作腔的容积发生周期性变化。容积增大的工作腔从进油口转过,形成吸油过程,而容积减小的工作腔从出油口转过,形成排油过程。,涡轮泵 涡轮式燃油泵的结构如图2-6所示,主要由壳体、涡轮等组成。当涡轮在电动机驱动下旋转时,在涡轮外缘每一个叶片沟槽的前后,由于液体的摩擦作用而产生压力差,由多个叶片沟槽所产生的压力差叠加后,使燃料压力升高,升压后的燃油经止回阀从出油口

8、排出。,此外,在现代汽车上多采用双级泵的结构形式。由于汽油极易挥发,以及油泵工作时温度升高和吸油而产生的真空,助长了燃油的汽化,使泵油量下降,导致输油压力波动。双级泵是初级泵加主输油泵两者合一而组成的组件,其结构如图2-7所示。,2)燃油压力调节器及系统油压变化规律 燃油压力调节器在汽车上的安装位置见图2-8,在燃油系统中的位置如图2-9所示,其结构如图2-10所示。,膜片下方的燃料室通过入口与供油系统的管路(一般是喷油器的供油轨)相通,膜片的上方装有弹簧,并通过真空管与发动机的进气歧管相通,下方的出口通过回油管与油箱相通,出口上方的阀口与膜片之间形成阀门,即回油阀。膜片的上方除受弹簧的作用力

9、外,还受到进气歧管绝对压力的作用,而膜片的下方则受到燃油压力的作用,回油阀的状态则取决于膜片上、下方作用力的平衡状态。当燃油压力较低时,膜片在弹簧作用下向下移动,回油阀关闭,没有燃油流回燃油箱;当燃油压力高于弹簧作用力与进气歧管绝对压力之和时,膜片被推向上方,回油阀打开,部分燃油经回油管流回燃油箱,从而释放系统油压,直至回油阀关闭。,发动机工作时,由于进气歧管绝对压力(或真空度)随发动机转速和节气门开度的变化而变化,所以,经燃油压力调节器调节后,供油系统的油压也随之发生变化,使燃油压力与进气歧管绝对压力之间的压力差维持在0.3MPa左右不变(也有个别车型为0.45MPa左右,例如奥迪汽车),如

10、图2-11 所示。该数据就是测量供油系统油压的依据。,当发动机熄火时,回油阀关闭,燃油泵出口处的止回阀也关闭,供油系统大约能够维持0.28MPa 左右的残余油压,该残余油压可以确保发动机下次能够快速、顺利起动。 另外,近年来又出现一种油压不受进气歧管真空度影响的燃油供给系统,其燃油压力调节器与燃油泵组合安装在燃油箱的内部,其结构原理如图2-12所示,当油压达到规定值时,阀门打开,泄出的燃油直接流回燃油箱。采用这种燃油供给系统时,发动机ECU需要根据进气歧管压力传感器的信号对喷油持续时间进行修正,以补偿进气歧管真空度变化对喷油量的影响。,3)燃油压力缓冲器 当喷油器喷射燃油时,输油管内会出现压来

11、自燃油泵力脉动现象。另外,电动燃油泵所提供的燃油也存在一定的压力脉动,该压力脉动对ECU精确控制燃油喷射量有一定的影响。为了消除该影响,部分汽车上采用了燃油压力缓冲器(或称燃油压力脉动减振器),其位置一般在供油轨上(图2-9),少数汽车设置在燃油泵的出油口处。 燃油压力缓冲器的结构如图2-13所示,它主要由壳体、膜片、阀片、弹簧等组成。当输油管内的燃油压力出现压力脉动时,膜片可以推动弹簧上下移动,从而通过调节管路的容积来吸收管路中的压力脉动。,4)燃油滤清器 燃油滤清器一般设置在燃油供给管路中(图2-2),也可以设置在燃油泵出口处(图2-1)并与燃油泵装在一起,由壳体和滤芯组成,其作用是过滤燃

12、油中杂质,确保喷油器等部件工作正常。图2-14为与燃油泵装在一起的燃油滤清器。 随着使用时间的延长,燃油滤清器会逐渐阻塞,造成供油不畅,从而影响发动机的动力性。在供油不畅的情况下,测试系统油压时会显示油压过低,这时,一般需要更换燃油滤清器。,四 任务实施 1.实训目的 2.设备准备 3.实训步骤 4.通过燃油压力测试进行故障诊断与排除 5.实训要求,1.实训目的 对燃油供给系统进行油压测试,并根据测试结果进行诊断和故障排除。,2.设备准备 丰田卡罗拉车型(或其他车型)一辆,或其他电控发动机台架一部;通用工具一套;发动机舱防护罩一套;“三件套”(座椅套、转向盘套、脚垫)一套;油压表一只。,3.实

13、训步骤 1)泄掉燃油系统残余油压 2)接入燃油压力表导线连接器 3)检测静态油压 4)检测怠速工况油压 5)检测正常运行时的油压 6)检测系统最高油压(大约0.392MPa) 7)残余油压检测,1)泄掉燃油系统残余油压 打开发动机舱盖,铺设发动机舱防护罩及“三件套”。 发动机运转法 直接释放法(注意防火),发动机运转法 拔掉燃油泵熔断丝(使电动燃油泵停止工作),起动发动机,利用发动机的运转消耗掉燃油系统的残余燃油。 对于有些汽车而言,电动燃油泵与喷油器、点火模块等共用一个熔断丝,用该方法无法泄压,此时可以用先拔下燃油泵电插头,再起动发动机的方法来泄压。 直接释放法(注意防火) 用棉纱包住燃油滤

14、清器的油管接头,用工具慢慢松开油管接头,利用棉纱吸收从油管接头渗出的燃油,直至燃油系统的残余油压被完全释放,然后再拧紧油管接头。,2)接入燃油压力表导线连接器 拆卸供油管与供油轨的连接螺柱(注意妥善处理燃油管内剩余的燃油),采用专用燃油检测软管和接头(最好采用带开关的三通接头,以便进行如后所述的内漏诊断,有开关的一端接供油轨,没有开关的一端接供油管)接入燃油压力表,如图2-15所示。,3)检测静态油压 插回燃油泵熔断丝(使油泵可以工作),接通点火开关,但不起动发动机。 此时,油泵会工作23s,建立静态油压,燃油压力表读数应为0.3MPa左右(具体数据查所用车型的维修手册)。,4)检测怠速工况油

15、压 起动发动机,燃油压力表读数应下降(因进气歧管真空度增大,即绝对压力下降,经燃油压力调节器调节后的油压也随之下降)。正常怠速工况时,燃油压力表读数应为0.196 0.235MPa左右。,5)检测正常运行时的油压 慢慢踩下加速踏板(俗称油门),发动机随之逐渐升速,燃油压力表读数应在0.1960.235MPa基础上逐渐升高到0.2650.304MPa。,6)检测系统最高油压(大约0.392MPa) 夹住回油管,燃油压力表读数应达到0.392MPa左右。,7)残余油压检测 断开点火开关,燃油压力表读数应为 0.28MPa左右,且30s内不下降。,4.通过燃油压力测试进行故障诊断与排除 (1)静态油

16、压(0.3MPa左右) (2)怠速工况油压(0.1960.235MPa) (3)正常运行油压(0.2650.304MPa) (4)最高油压(大约0.392MPa) (5)残余油压,(1)静态油压(0.3MPa左右) 如果读数过大,则说明燃油压力调节器存在故障,应更换。 如果读数为0,则说明电动燃油泵没有运转,应检查电动燃油泵及其控制电路。 如果读数过小,则说明电动燃油泵供油压力不足或燃油压力调节器回油过量,此时,可以夹住回油管,再接通一次点火开关,如果读数仍然过小,则查电源电压;电压正常时,查油路阻塞情况(特别是燃油滤清器和燃油泵入口处的滤网);没有阻塞,则换电动燃油泵。,如果夹住回油管时读数上升,则说明燃油压力调节器回油过量,应更换燃油压力调节器。 电动燃油泵检查方法: 在电动燃油泵两接线端子之间直接接12V电源(注意正负极),应能听到燃油

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 解决方案

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号