纳米结构和能带调控增强氮化碳光催化矿化性能的研究

上传人:油条 文档编号:54417868 上传时间:2018-09-12 格式:PPT 页数:36 大小:12.87MB
返回 下载 相关 举报
纳米结构和能带调控增强氮化碳光催化矿化性能的研究_第1页
第1页 / 共36页
纳米结构和能带调控增强氮化碳光催化矿化性能的研究_第2页
第2页 / 共36页
纳米结构和能带调控增强氮化碳光催化矿化性能的研究_第3页
第3页 / 共36页
纳米结构和能带调控增强氮化碳光催化矿化性能的研究_第4页
第4页 / 共36页
纳米结构和能带调控增强氮化碳光催化矿化性能的研究_第5页
第5页 / 共36页
点击查看更多>>
资源描述

《纳米结构和能带调控增强氮化碳光催化矿化性能的研究》由会员分享,可在线阅读,更多相关《纳米结构和能带调控增强氮化碳光催化矿化性能的研究(36页珍藏版)》请在金锄头文库上搜索。

1、纳米结构和能带调控增强氮化碳光催化矿化性能的研究,研究背景,C3N4是一种低成本、可量产的可见光催化剂; C3N4的价带位置高,氧化能力不足,难以破坏苯环实现彻底降解; C3N4催化剂介于有机和无机材料,电荷的平均自由程短;结构缺陷多,活性相对较低;,2,降低价带位置,提升氧化电位和矿化能力 采用纳米结构,缩短扩散距离,提高活性; 采用复合结构,促进电荷分离和迁移,提高性能,报告内容提要,-作用降低价带位置,K掺杂等提高C3N4光催化矿化能力和活性 C60,P3HT,TCNQ,CuTCCP,K掺杂 纳米结构降低电荷迁移距离,提高C3N4光催化活性 多孔结构、纳米片,纳米棒,量子点 表面杂化和核

2、壳结构促进电荷分离提高光催化性能C3N4Ag、C3N4ZnO、C3N4Bi2WO6、C3N4BiPO4 光电协同催化提高C3N4光催化降解性能,2018/9/12,清华大学化学系,3,-作用调控价带位置提高C3N4光催化剂的矿化能力,2018/9/12,清华大学化学系,4,形成大的共轭体系,降低价带位置,Mineralization Ability of C3N4 Enhanced via lower Valence Position by TCNQ,5,J. Mater. Chem. A, 2014, 2,11432,Formed layer-layer structure of C3N4

3、&TCNQ Charge Transfer formation via - action High concentration, TCNQ existed as nanocrystal,Mineralization Ability of C3N4 Enhanced via Lower Valence Position by TCNQ,6,The activity for phenol degradation increased about 8.1 times Visible light activity was extended to 600nm Photocurrent also incre

4、ased greatly,7,Mineralization Ability of C3N4 Enhanced via Lower Valence Position by TCNQ,- action between TCNQ & C3N4 promoted charge separation and activity enhancement - action between TCNQ & C3N4 decreased the position of VB and enhanced oxidation ability,8,Main active species for C3N4 is super-

5、oxygen radical Active species for TCNQ-C3N4 is hole and super-oxygen radical,TCNQ-C3N4,g-C3N4,Radical via ESR,Capture of Active Species,Degradation Species Via HPLC,Mineralization Ability of C3N4 Enhanced via Lower Valence Position by TCNQ,9,Enhancement of Performances of C3N4 via Action with C60,Fo

6、rmed complex structure C60 existed as nanocrystal - action existed C60 and C3N4,Applied Catalysis B: Environmental. 2014, 152-153, 262,Photoactivity and photocurrent increased 3 and 4 times Phenol can be mineralized completely,Enhancement of Performances of C3N4 via Action with C60,11,VB position de

7、creased about 0.3eV Promote charge separation Active species are hole and hydro-radical,Enhancement of Performances of C3N4 via Action with C60,12,Enhancement of Performances of C3N4 via Action with C60,2018/9/12,清华大学化学系,13,Formed interaction between P3HT and C3N4,Enhancement of Performances of C3N4

8、 via Action with P3HT,2018/9/12,14,The activity was enhanced Position of VB was decreased 0.3eV and the mineralization ability was increased for phenol,Enhancement of Performances of C3N4 via Action with P3HT,2018/9/12,15,Enhancement of Performances of C3N4 via Action with P3HT,The activity species

9、was hole and hydro-radicals,16,Applied Catalysis B: Environmental 166167 (2015) 366,Enhancement of Performances of C3N4 via Action with CuTCPP,The performances of C3N4 can be enhanced via CuTCPP greatly,Enhancement via Doping of K,17,Photoactivity and photocurrent increased 3.5 and 5 times Mineraliz

10、ation ability was enhanced via low VB position,Applied Catalysis B: Environmental, 164 (2015) 77,纳米结构提高光催化性能,多孔结构 纳米棒结构 化学剪切量子点 单分子层纳米片结构,18,电荷平均自由程 无机材料,100nm 有机材料,10nm,g-C3N4 + H2SO4 g-C3N4 nanosheet(with defects),Photoactivity Enhancement via Nanosheet,Journal of Materials Chemistry A, 2013, 1 ,

11、14766,g-C3N4,g-C3N4 nanosheet,Nanosheet was formed Refluxing can remove structure defect in nanosheet,Refluxing,Journal of Materials Chemistry A, 2013, 1 (46), 14766,Photoactivity Enhancement via Nanosheet,1. Thickness of bulk g-C3N4 is 5 nm 2. Thickness of g-C3N4 nanosheet is 0.4 nm with monolayer

12、structure,g-C3N4,g-C3N4 nanosheet,Refluxing nanosheet,Photoactivity Enhancement via Nanosheet,XRD,FTIR,DRS,PL,XRD:100 face disappeared and 002face weakened FTIR: chemical structure is remained DRS、PL:blue-shift formed nanostructure,Photoactivity Enhancement via Nanosheet,Ratio of C/N in g-C3N4 nanos

13、heet is stable Surface area of g-C3N4 nanosheet increase 20 times H2 production rate increased about 2.6 times,Photoactivity Enhancement via Nanosheet,MB degradation rates increased about 2.8,2.4 and 2.9 times under UV, Visible light and solar irradiation Phenol degradation rate increased 3.1 times

14、under visible light irradiation,Photoactivity Enhancement via Nanosheet,UV light,Visible light ( 420 nm),Photocurrent increased about 3 and 3.5 times under irradiation of UV and visible lightCharge separation was promoted via nanosheet structure,Photoactivity Enhancement via Nanosheet,EIS,Nanosheet

15、structure promoted the charge separation Refluxing can remove defects and promote charge seperation,Photoactivity Enhancement via Nanosheet,The Journal of Physical Chemistry C. 2013, 117 (19), 9952-9961,27,Length is 0.5-3 m Diameter is 100-150 nm Crystalline degree increased,Photoactivity Enhancemen

16、t via Nanorods,2.3 times,Nanorod promoted charge separation and enhanced photoactivity,Refluxing synthesis of nanorods Exfoliation and curling to form nanorods Crystalline degree increase enhanced photoactivity,Photoactivity Enhancement via Nanorods,Photoactivity Enhancement via Porous Structure,Langmuir,2013, 29, 10566; Applied Catalysis B: 147 (2014) 229,Pore can be formed via urea and thiourea as bubble-templatingSurface area can increased 12 times and activity increased 2.1,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 行业资料 > 其它行业文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号