(毕业论文)-外文翻译--微机发展简史

上传人:zhuma****mei1 文档编号:54243230 上传时间:2018-09-10 格式:DOC 页数:21 大小:89.50KB
返回 下载 相关 举报
(毕业论文)-外文翻译--微机发展简史_第1页
第1页 / 共21页
(毕业论文)-外文翻译--微机发展简史_第2页
第2页 / 共21页
(毕业论文)-外文翻译--微机发展简史_第3页
第3页 / 共21页
(毕业论文)-外文翻译--微机发展简史_第4页
第4页 / 共21页
(毕业论文)-外文翻译--微机发展简史_第5页
第5页 / 共21页
点击查看更多>>
资源描述

《(毕业论文)-外文翻译--微机发展简史》由会员分享,可在线阅读,更多相关《(毕业论文)-外文翻译--微机发展简史(21页珍藏版)》请在金锄头文库上搜索。

1、Progress in Computers Prestige Lecture delivered to IEE, Cambridge, on 5 February 2004Maurice WilkesComputer LaboratoryUniversity of CambridgeThe first stored program computers began to work around 1950. The one we built in Cambridge, the EDSAC was first used in the summer of 1949.These early experi

2、mental computers were built by people like myself with varying backgrounds. We all had extensive experience in electronic engineering and were confident that that experience would stand us in good stead. This proved true, although we had some new things to learn. The most important of these was that

3、 transients must be treated correctly; what would cause a harmless flash on the screen of a television set could lead to a serious error in a computer.As far as computing circuits were concerned, we found ourselves with an embarass de richess. For example, we could use vacuum tube diodes for gates a

4、s we did in the EDSAC or pentodes with control signals on both grids, a system widely used elsewhere. This sort of choice persisted and the term families of logic came into use. Those who have worked in the computer field will remember TTL, ECL and CMOS. Of these, CMOS has now become dominant.In tho

5、se early years, the IEE was still dominated by power engineering and we had to fight a number of major battles in order to get radio engineering along with the rapidly developing subject of electronics.dubbed in the IEE light current electrical engineering.properly recognised as an activity in its o

6、wn right. I remember that we had some difficulty in organising a conference because the power engineers ways of doing things were not our ways. A minor source of irritation was that all IEE published papers were expected to start with a lengthy statement of earlier practice, something difficult to d

7、o when there was no earlier practiceConsolidation in the 1960s By the late 50s or early 1960s, the heroic pioneering stage was over and the computer field was starting up in real earnest. The number of computers in the world had increased and they were much more reliable than the very early ones . T

8、o those years we can ascribe the first steps in high level languages and the first operating systems. Experimental time-sharing was beginning, and ultimately computer graphics was to come along.Above all, transistors began to replace vacuum tubes. This change presented a formidable challenge to the

9、engineers of the day. They had to forget what they knew about circuits and start again. It can only be said that they measured up superbly well to the challenge and that the change could not have gone more smoothly. Soon it was found possible to put more than one transistor on the same bit of silico

10、n, and this was the beginning of integrated circuits. As time went on, a sufficient level of integration was reached for one chip to accommodate enough transistors for a small number of gates or flip flops. This led to a range of chips known as the 7400 series. The gates and flip flops were independ

11、ent of one another and each had its own pins. They could be connected by off-chip wiring to make a computer or anything else.These chips made a new kind of computer possible. It was called a minicomputer. It was something less that a mainframe, but still very powerful, and much more affordable. Inst

12、ead of having one expensive mainframe for the whole organisation, a business or a university was able to have a minicomputer for each major department.Before long minicomputers began to spread and become more powerful. The world was hungry for computing power and it had been very frustrating for ind

13、ustry not to be able to supply it on the scale required and at a reasonable cost. Minicomputers transformed the situation.The fall in the cost of computing did not start with the minicomputer; it had always been that way. This was what I meant when I referred in my abstract to inflation in the compu

14、ter industry going the other way. As time goes on people get more for their money, not less. Research in Computer Hardware. The time that I am describing was a wonderful one for research in computer hardware. The user of the 7400 series could work at the gate and flip-flop level and yet the overall

15、level of integration was sufficient to give a degree of reliability far above that of discreet transistors. The researcher, in a university or elsewhere, could build any digital device that a fertile imagination could conjure up. In the Computer Laboratory we built the Cambridge CAP, a full-scale mi

16、nicomputer with fancy capability logic. The 7400 series was still going strong in the mid 1970s and was used for the Cambridge Ring, a pioneering wide-band local area network. Publication of the design study for the Ring came just before the announcement of the Ethernet. Until these two systems appeared, users had mostly been content with teletype-based local area networks. Rings need high reliability because, as the pulses go repeatedly round the ring, they must be continually amplified and

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 学术论文 > 毕业论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号