statcom谐波,不平衡负载及无功电流复合控制策略

上传人:xzh****18 文档编号:45822844 上传时间:2018-06-19 格式:PDF 页数:7 大小:418.47KB
返回 下载 相关 举报
statcom谐波,不平衡负载及无功电流复合控制策略_第1页
第1页 / 共7页
statcom谐波,不平衡负载及无功电流复合控制策略_第2页
第2页 / 共7页
statcom谐波,不平衡负载及无功电流复合控制策略_第3页
第3页 / 共7页
statcom谐波,不平衡负载及无功电流复合控制策略_第4页
第4页 / 共7页
statcom谐波,不平衡负载及无功电流复合控制策略_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《statcom谐波,不平衡负载及无功电流复合控制策略》由会员分享,可在线阅读,更多相关《statcom谐波,不平衡负载及无功电流复合控制策略(7页珍藏版)》请在金锄头文库上搜索。

1、智能配电网中三相智能配电网中三相 APF-STATCOMAPF-STATCOM 谐波谐波、 不平衡负载及无功电流复不平衡负载及无功电流复合控制策略合控制策略摘要摘要: :基于电能质量复合控制思想,针对智能配电网中谐波电流、负载不平衡、功率因数较 低问题,给出一种谐波、负序及无功电流复合补偿策略,并给出关键参数设计方法。相关 APF-STATCOM 仿真、实验验证及产品现场运行实测结果验证了复合控制思想及补偿策略正确 性及可行性。 近年来,出于节能环保的考虑,配电网终端供电系统中电力电子变换装置应用越来越广泛, 如照明、办公、空调、电梯等相关供电系统,但这类非线性电能变换装置在改善用户端电能 质

2、量同时,往往诱发配电网侧谐波及无功电流问题,线损、中线及变压器过热、电表计量不 准, 甚至保护误动作等现象时有发生。 传统无源滤波及投切电容器补偿尽管能够解决上述问 题,且成本较低,但无法实时连续调节,存在过补偿、无功倒送甚至诱发配电网谐振可能性 1-3。 为保障智能配电网终端用户高品质定制电力供应,随着瞬时功率理论及电力电子器件的发 展,取代无源滤波及电容器无功补偿装置,其主电路拓扑结构及设计、谐波电流检测、补偿 方法、控制及调制策略,以及启动特性均是业界研究及工业应用的持续热点话题2-6。 由于如今智能配电网中电能质量问题已经不再是一个单一的问题, 而是一个非常复杂的系统 问题。如图1所示

3、,某公用设施配电系统中同时存在谐波电流、负载不平衡及功率因数较低 等问题。电能质量复合控制技术逐渐被学术界及工业界提上研究日程7-8。图1 1 实际配电网电能质量问题 Fig.Fig. 1 1 PowerPower qualityquality issueissue inin a a realreal distributeddistributed gridgrid 本文研究了智能配电网环境下,同时面对时变谐波电流、不平衡负载及无功问题, 给出一种谐波、负序和无功电流复合补偿策略,及其关键参数设计方法。相关仿真、实验验 证及产品现场运行实测结果验证了该控制策略的正确性及可行性。 APF-STAT

4、COM 电路结构及工作机理图2并联 APF-STATCOM 框图 Fig.Fig. 2 2 AnAn APF-STATCOM diagramdiagram 如图2所示, 该并联 APF-STATCOM 采用两电平三相四桥臂电压源逆变器拓扑, 其中前 三桥臂实现谐波及无功补偿, 第四桥臂独立用于控制中线电流。 这是由于三相四线制系统中, 当负载不平衡时,中线往往流过较大零序电流,其不同于三相三线制系统。因此,增加与前 三桥臂解耦控制的第四桥臂提供零序电流通路。 此时 APF-STATCOM 产生一个与负载电流iL,abc 中谐波、基波负序和零序分量之和相反的补偿电流iC,abc,使得电源电流iS

5、,abc仅提供负载电 流基波正序分量,确保源输出对称三相电流并提高功率因数。其中中线电流分离检测、锁相环、谐波电流检测、直流电压控制、电流控制及 PWM 调制是实 现高性能 APF-STATCOM 的关键。锁相环、直流电压控制等与三相三线制系统相同,在此不作 详细介绍。 关键问题分析 1. 第四桥臂中线电流分离检测及控制 考虑到不平衡的三相四线制电路中的负载电流iL,abc所包含的零序分量iN相等,均为(1)如图2所示,此时中线电流采样值iN,与中线零序电流分量补偿指令iNref一并作为第四桥臂 电流控制器输入,通过 PI 调节器得到调制信号获得第四桥臂开关信号。 同时有,(2)(3)(4)式

6、中,仅含正序分量及负序分量,便于后续采用三相三线系统中ip-iq谐波电流检测算法。 2. 谐波电流检测图3?用d-q变换检测谐波的原理图 Fig.Fig. 3 3 TheThe schematicschematic diagramdiagram ofof thethe harmonicsharmonics detectingdetecting methodmethod basedbased onond-qd-qrotatingrotating coordinationcoordination transformationtransformation 传统基于p-q瞬时无功功率理论检测谐波电流方

7、法受电压畸变及不对称影响较大, 实际场合 并不适用9。实际场合多采用加入锁相环 PLL 电路的ip-iq瞬时无功功率理论检测方法, 具 体如图3所示,相关变换为(5)(6)提取不含零序分量的电流, 通过 Park 变换,将基波分量在d-q-0 坐标中变换到0Hz 处(或先经变换再经dq变换亦可),用低通滤波器提取基波正序分量即可5。图2中直流电压调节器输出值生成部分有功电流指令,用于稳定直流母线电压并补偿功率损 耗部分。若为提高功率因数,可以同时补偿无功电流,此时基波负序无功电流指令值设定为 0。最后用负载电流减去基波电流正序分量,即可得到补偿负载电流中谐波分量和因负载不 平衡导致的电流负序分

8、量、 零序分量的指令电流量以及无功电流正序分量的指令电流, 实现 APF-STATCOM 功能。 3. 电流 PR 谐振控制器设计 由于 APF-STATCOM 跟踪的电流指令是多种频率正弦量的叠加信号,传统 SPWM 调制采用 PI 控制必定存在稳态误差和相位偏移,补偿效果不佳,往往采用电流滞环调制,但变频调制不 可避免带来滤波器设计及噪声控制问题9。 通过旋转坐标变换可以将正弦信号变为直流信号,从而在新的坐标系下采用 PI 控制器。但 在 APF-STATCOM 控制领域,必须在多个频率下进行坐标变换,计算复杂,不利于实际应用。 近年来,针对正弦信号的提出的 PR 控制器,在可以避免旋转坐

9、标变换,计算量大大降低的 同时,获得与同步坐标系下的 PI 控制器相同控制效果:能无稳态误差地跟踪特定频率的正 弦信号,更重要的是可以对指定频率的谐波进行有选择地补偿。(7)(8)式中为谐振频率。由式(7)可知,对直流系统而言,由于积分环节的存在,0 Hz 处的增益极高,从而 系统可以实现无静差调节;对于交流系统,50Hz 及其倍数次谐波,式(7)增益有限,式(8) 由 于 谐 振 环 节 的 引 入 , 在 相 应 频 段 有 较 高 的 增 益 。 若 跟 踪 的 目 标 为 基 波rad/s;若需补偿较高幅值的5次谐波,则有rad/s。通常补偿谐波次数最高至20或50次,尤其是幅值较高的

10、奇次谐波。因此有,(9)图4所示为基波及三、五、七次谐波补偿用 PR 谐振控制器波特图,可以看出在相应频段电流 控制器增益较高,有助于减小跟踪误差。技术支持:周菁,女,手机:18860995117,QQ:2880157872图4?PR 谐振控制器波特图 Fig.Fig. 4 4 PRPR controllercontroller bodebode plotsplots 仿真及实验验证 为验证所提出的谐波、负序及无功电流复合补偿策略,本文在 Matlab Simulink 环境下建 立仿真平台。相关参数设置如下:输入三相四线制电压380V/50Hz,三相二极管整流器非线 性负载直流侧滤波电感1m

11、H,电阻3.2,三相二极管整流器交流电抗0.4mH,APF-STATCOM 并网电抗0.4mH, 直流侧支撑电容4000F, 交流侧不平衡 RL 负载星型联接, 电感值均为8mH, 电阻值分别为5,50,500,开关频率10kHz。 图5所示以 A 相为例, 表明补偿后 APF-STATCOM 注入电流很好地抵消了负载电流的谐波电流, 使得电网电流正弦化较好,实现了 APF 谐波补偿功能;同时电网电流与电网电压同频同相, 功率因数接近于1,实现了 STATCOM 无功补偿功能。图6给出三相补偿结果,对称三相电流波 形验证其具有较好抑制不平衡负载能力。图5A 相补偿后电压电流波形(从上到下依次是

12、电网电压/V、电网电流/A、补偿电流/A、负 载电流/A,时间轴t/s) Fig.Fig. 5 5 PhasePhase A A wavewave formsforms afterafter compensationcompensation技术支持:周菁,女,手机:18860995117,QQ:2880157872图6补偿后电网三相电压电流波形(从上到下依次是三相电网电压/V、三相电网电流/A, 时 间轴t/s) Fig.Fig. 6 6 ThreeThree phasephase wavewave formsforms afterafter compensationcompensation

13、图7进一步给出直流侧母线电压波形,可以看出 APF-STATCOM 在完成谐波补偿后,母线电压 略有波动,但稳定在750V 设定值附近。图7直流侧母线电压/V(时间轴 t/s) Fig.Fig. 7 7 DcDc linklink busbus voltagevoltage 图8及图9进一步给出工业样机内部测试结果, 受实验条件限制, 此时负载仅为整流性非线性 负载,故负载电流及补偿电流与仿真有所区别,其主要体现了 APF 补偿功能。图10给出产品 在现场投运结果,与图1相比,中性线电流由37A 减小至5A,三相电流 THD 最大不超过3.4%, 且对称性较好,充分验证了 APF-STATCO

14、M 复合补偿功能。图8A 相及 B 相补偿后网侧电流及负载电流(从上到下依次是 A 相电压、B 相电流、A 相负 载电流、B 相负载电流) Fig.Fig. 9 9 PhasePhase A A &B&B gridgrid & & loadload currentcurrent afterafter compensationcompensation图9A 相补偿后网侧电流、发出反向谐波电流及负载电流 Fig.Fig. 9 9 PhasePhase A A grid,grid, inverseinverse harmonicharmonic currentcurrent & & loadload

15、 currentcurrent afterafter compensationcompensation图10实际现场 APF-STATCOM 补偿后结果 Fig.Fig. 1010 APF-STATCOM CompensationCompensation effectseffects inin practicepractice 结论语 基于电能质量复合控制思想, 针对智能配电网中谐波电流、 负载不平衡、 功率因数较低问题, 提出一种谐波、负序及无功电流复合补偿策略。 仿真、工程样机试验及现场运行结果验证了基于该策略所实现的 APF-STATCOM 复合补偿功 能。文章来源: 电气应用2014年

16、 第6期 参考文献 1.国家技术监督局中国国家标准 GB/T 14549-93电能质量公用电网谐波S北京:中国 标准出版社,1994 2.赤木泰文(Hirofumi Akagi)等(徐政 译)瞬时功率理论及其在电力调节中的应用J 北 京:机械工业出版社,2009 3.王兆安,杨君,刘进军谐波抑制和无功功率补偿。机械工业出版社,1998 4.马莉,周景海,吕征宇,钱照明一种基于dq变换的改进型谐波检测方案的研究J 中国电机工程学报,2000,20(10):55-63 Ma Li,Zhou Jinghai,LZhengyu,Qian Zhaoming An improved harmonic detecting approach based ondqrotating coordination transformationJProceedings of the CSEE,2000,20(10):55-63(in Chinese) Zeliang Shu, Yuhua Guo, and Jisan Lian.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 行业资料 > 其它行业文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号