知识要点 第七单元 生物氧化

上传人:kms****20 文档编号:37678776 上传时间:2018-04-20 格式:DOC 页数:5 大小:44.50KB
返回 下载 相关 举报
知识要点 第七单元 生物氧化_第1页
第1页 / 共5页
知识要点 第七单元 生物氧化_第2页
第2页 / 共5页
知识要点 第七单元 生物氧化_第3页
第3页 / 共5页
知识要点 第七单元 生物氧化_第4页
第4页 / 共5页
知识要点 第七单元 生物氧化_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

《知识要点 第七单元 生物氧化》由会员分享,可在线阅读,更多相关《知识要点 第七单元 生物氧化(5页珍藏版)》请在金锄头文库上搜索。

1、第七单元第七单元 生物氧化生物氧化一、生物能学的几个概念一、生物能学的几个概念(一)化学反应中的自由能变化及其意义(一)化学反应中的自由能变化及其意义1.1.化学反应中的自由能化学反应中的自由能自由能:在一个体系中,能够用来做有用功的那一部分能量称自由能,用符号G表示。在恒温、恒压下进行的化学反应,其产生有用功的能力可以用反应前后自由能的变化来衡量。自由能的变化:G = G 产物 G反应物 = H _ TSG 代表体系的自由能变化,H代表体系的焓变化,T代表体系的绝对温度, S代表体系的熵变化。焓与熵都是体系的状态函数。焓代表体系的内能与压力P乘以体积V之和:H = U + PV,dH = d

2、U + PdV + VdP 熵代表体系中能量的分散程度,也就是体系的无序程度:S = dQT ,S = S体系+S环境 ,只有S0,过程才能自发进行。 2.G2.G是判断一个过程能否自发进行的根据是判断一个过程能否自发进行的根据G0,反应不能自发进行,必须供给能量。G=0,反应处于平衡状态。 一个放热反应(或吸热反应)的总热量的变化(H) ,不能作为此反应能否自发进行的判据,只有自由能的变化才是唯一准确的指标。G0仅是反应能自发进行的必要条件,有的反应还需催化剂才能进行,催化剂( 酶)只能催化自由能变化为负值的反应,如果一个反应的自由能变化为正值,酶也无能为力。当G为正值时,反应体系为吸能反应

3、,此时只有与放能反应相偶联,反应才能进行。3.3.标准自由能变化及其与化学反应平衡常数的关系标准自由能变化及其与化学反应平衡常数的关系aA+bB cC+dD 标准自由内能变化:在规定的标准条件下的自由能变化,用G表示。标准条件:25,参加反应的物质的浓度都是1molL(气体则是1大气压) 。若同时定义pH =7.0,则标准自由能变化用G表示。G=GTln K/K/是化学反应的平衡常数,因此,G/ 也是一个常数。常见物质的标准生成自由能G已经列在各种化学手册中,可以根据G= -RT lnK的公式求出平衡常数K。G o / 和G实际上是两个不同条件下的自由能变化值。 (1)G o /是标准条件下的

4、自由能变化,既反应物A、B、C、D的起始浓度都为1mol/L,温度为25,pH=7.0时的G。每一个化学反应都有其特定的标准自由能变化(既G o /) ,是一个固定值,G是任意给定条件下的自由能变化,它是反应物A、B、C、D的起始浓度、温度、pH的状态函数,在一个自发进行的化学反应中,自由能总是在降低,G总是负值,随着反应向平衡点的趋近,G的绝对值逐渐缩小,直到为0。(2)从G o / = -RT lnK/,可以求出K/及G o /,根据G o /、G 与K/可以判断任何条件下反应进行的方向及程度。(二)自由能变化的可加和性(二)自由能变化的可加和性在偶联的几个化学反应中,自由能的总变化等于每

5、一步反应自由能变化的总和。因此,一个热力学上不能进行的反应,可与其它反应偶联,驱动整个反应进行。此类反应在生物体内是很普遍的。二、高能磷酸化合物二、高能磷酸化合物高能化合物:水解时释放5000卡/mol及以上自由能的化合物。高能磷酸化合物:水解每摩尔磷酸基能释放5000cal以上能量的磷酸化合物。(一)高能化合物的类型(一)高能化合物的类型1.1.磷氧键型。磷氧键型。(1 1)酰基磷酸化合物)酰基磷酸化合物3-磷酸甘油酸磷酸,乙酰磷酸,氨甲酰磷酸,酰基腺苷酸,氨酰腺苷酸。(2 2)焦磷酸化合物。)焦磷酸化合物。无机焦磷酸,ATP,ADP。(3 3)烯醇式磷酸化合物)烯醇式磷酸化合物磷酸烯醇式丙

6、酮酸。2.2.氮磷键型氮磷键型磷酸肌酸,磷酸精氨酸。3.3.硫酯键型硫酯键型3-磷酸腺苷-5-磷酰硫酸,酰基辅酶A。4.4.甲硫键型甲硫键型S-腺苷甲硫氨酸。(二)(二)ATPATP的特殊的作用的特殊的作用1.1.是细胞内产能反应和需能反应的化学偶联剂是细胞内产能反应和需能反应的化学偶联剂2.2.在磷酸基转移中的作用。在磷酸基转移中的作用。如已糖激酶:Glc+ATPG-6-P+ADP。甘油激酶:甘油+ATP3一磷酸甘油+ADP。(三)磷酸肌酸、磷酸精氨酸的储能作用(三)磷酸肌酸、磷酸精氨酸的储能作用 磷酸肌酸是易兴奋组织(如肌肉、脑、神经)唯一的能起暂时储能作用的物质。磷酸精氨酸是无脊椎动物肌

7、肉中的储能物质。三、生物氧化、氧化电子传递链和氧化磷酸化作用三、生物氧化、氧化电子传递链和氧化磷酸化作用(一)生物氧化的概念和特点。(一)生物氧化的概念和特点。糖,脂,蛋白质等有机物质在细胞中进行氧化分解,生成CO2,H2O并释放出能量,这个过程称生物氧化。生物氧化是需氧细胞呼吸代谢过程中的一系列氧化还原作用,又称细胞氧化或细胞呼吸。其特点是反应条件温和,多步反应,逐步放能。生物氧化在活细胞中进行,pH中性,反应条件温和,一系列酶和电子传递体参与氧化过程,逐步氧化,逐步释放能量,转化成ATP。真核细胞,生物氧化多在线粒体内进行,在不含线粒体的原核细胞中,生物氧化在细胞膜上进行。生物氧化分为三个

8、阶段,第一阶段:多糖,脂,蛋白质等分解为构造单位单糖、甘油与脂肪酸、氨基酸,该阶段几乎不释放化学能。第二阶段:构造单位经糖酵解、脂肪酸氧化、氨基酸氧化等各自的降解途径分解为丙酮酸、乙酰CoA等少数几种共同的中间代谢物物,这些共同的中间代谢物在不同种类物质的代谢间起着枢纽作用。该阶段释放少量的能量。第三阶段:丙酮酸、乙酰CoA等经过三羧酸循环彻底氧化为CO2、H2O。释放大量的能量。在第二、第三阶段中,氧化脱下的电子(H)经过一个氧化的电子传递过程(氧化电子传递链)最终传给O2,并生成ATP,以这种方式生成ATP的作用称为氧化磷酸化作用,它是一种很重要的将生物氧化和能量生成相偶连的机制。生物氧化

9、的终产物是CO2和H2O,CO2的形成是通过三羧酸循环过程,H2O则是在电子传递过程的最后阶段生成。(二)氧化电子传递过程(二)氧化电子传递过程生物氧化过程中形成的还原型辅酶(NADH和FADH2) ,通过电子传递途径,使其重新氧化,此过程称为电子传递过程。在电子传递过程中,还原型辅酶中的氢以负质子(H )形式脱下,其电子经一系列的电子传递体(电子传递链)转移,最后转移到分子氧上,质子和离子型氧结合生成H2O。1.1.氧化电子传递链氧化电子传递链由NADH到O2的氧化电子传递链主要包括FMN、辅酶Q(CoQ) 、细胞色素b、c1、c、a,a3及一些铁硫蛋白。氧化电子传递链位于原核生物的质膜上,

10、真核生物中位于线粒体的内膜上。电子载体的标准势能G o /是逐步下降的,电子沿着电势升高的方向流动。其中有三个部位的势能落差G较大,足以形成ATP(ADP磷酸化需要的自由能=7.3Kal/mol.) 。这三个部位正好是氧化磷酸化部位。细胞内供能物质的彻底氧化产物是CO2、H2O其中CO2主要是在三羟酸循环中产生,水是在电子传递过程的最后阶段产生。2.2.电子传递链的酶和电子载体电子传递链的酶和电子载体呼吸链中的电子载体都是和蛋白质结合存在(包括NAD+、FMN、铁硫中心、细胞色素) 。这些蛋白质大都是水不溶性的,嵌在线粒体的内膜上。(1 1)NADNAD+ +和和NADPNADP+ +脱氢酶分

11、别与NAD+或NADP+结合,催化底物脱氢,这类酶称为与NAD(P)相关的脱氢酶,多数脱氢酶以NAD+为辅酶,少数以NADP+为辅酶(如G-6-P脱氢酶)少数酶能以NAD+或NADP+两种辅酶(Glu脱氢酶) 。(2 2)NADHNADH脱氢酶以及其它黄素蛋白酶类脱氢酶以及其它黄素蛋白酶类NADH脱氢酶含FMN辅基,铁-硫中心。铁硫中心铁的价态变化(Fe3+Fe2+)可以将电子从FMN辅基上转移到呼吸链下一成员辅酶Q上。含有核黄素辅基的酶还包括琥珀酸脱氢酶、脂酰CoA脱氢酶等。(3 3)辅酶)辅酶Q Q(泛醌)(泛醌)电子传递链上唯一的非蛋白质成分。辅酶Q在线粒体中有两种存在形式:膜结合型、游

12、离型。辅酶Q不仅可以接受FMN上的氢(NADH脱氢酶) ,还可以接受线粒体FADH2上的氢(如琥珀酸脱氢酶、脂酰CoA脱氢酶以及其它黄素酶类) 。(4 4)细胞色素类)细胞色素类细胞色素类是含铁的电子传递体,铁原子处于卟啉的结构中心,构成血红素。细胞色素类是呼吸链中将电子从辅酶Q传递到O2的专一酶类。线粒体的电子传递链至少含有5种不同的细胞色素:b、c、c1、.a、a3,细胞色素b有两种存在形式:b562、b566,细胞色素c是唯一可溶性的细胞色素,同源性很强,可作为生物系统发生关系的一个指标。细胞色素a、a3是以复合物的形式存在,又称细胞色素氧化酶,将电子从细胞色素c传到分子O2 。3.电子

13、传递抑制剂阻断呼吸链中某一部位的电子传递,主要有鱼藤酮、安密妥、杀粉蝶菌素等,可阻断电子由NADH向CoQ传递。抗霉素A,抑制电子从细胞色素b向细胞色素c1传递。氰化物、硫化氢、叠氮化物、CO等,阻断电子从细胞色素aa3 向O2传递。(三)氧化磷酸化作用(三)氧化磷酸化作用1.几个概念几个概念氧化磷酸化作用:电子沿着氧化电子传递链传递的过程中所伴随的将ADP磷酸化为ATP的作用,或者说是ATP的生成与氧化电子传递链相偶联的磷酸化作用。底物水平磷酸化作用:是指ATP的形成直接与一个代谢中间物(如PEP)上的磷酸基团转移相偶联的作用。糖酵解中1,3-二磷酸甘油酸,磷酸烯醇丙酮酸。P/O比:一对电子

14、通过呼吸链传至氧所产生的ATP的分子数。NADH3ATP,FADH22ATP 呼吸控制:ADP作为关键物质,对氧化磷酸化的调节作用称为呼吸控制。解偶联剂(2.4硝基苯酚):电子传递过程和ATP形成过程相分离,电子传递仍可进行,但不能形成ATP。氧化磷酸化抑制剂:抑制O2的利用和ATP的形成。2.2.氧化磷酸化的偶联机理氧化磷酸化的偶联机理伴随着呼吸链电子传递过程发生的ATP的合成称为氧化磷酸化。氧化磷酸化是生物体内的糖、脂肪、蛋白质氧化分解,并合成ATP的主要方式。英国生物化学家Peter Mitchell于1961年提出的关于解释呼吸链电子传递与氧化磷酸化作用偶联机制的一种假说。其基本观点是:电子经呼吸链传递释放的能量,将质子从线粒体内膜的内侧泵到内膜的外侧,在膜两侧形成电化学梯度而积蓄能量,当质子顺此梯度经ATP合成酶F0通道回流时,F1催化ADP与Pi结合,形成ATP。NADHH+生物氧化时的磷氧比值为2.5,FADH2的磷氧比值为1.5。氧化磷酸化作用的机制,已有十分收入纳入的研究。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 科普知识

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号