现代气压沉箱施工的环境监测及分析

上传人:kms****20 文档编号:37432379 上传时间:2018-04-16 格式:DOC 页数:5 大小:605KB
返回 下载 相关 举报
现代气压沉箱施工的环境监测及分析_第1页
第1页 / 共5页
现代气压沉箱施工的环境监测及分析_第2页
第2页 / 共5页
现代气压沉箱施工的环境监测及分析_第3页
第3页 / 共5页
现代气压沉箱施工的环境监测及分析_第4页
第4页 / 共5页
现代气压沉箱施工的环境监测及分析_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

《现代气压沉箱施工的环境监测及分析》由会员分享,可在线阅读,更多相关《现代气压沉箱施工的环境监测及分析(5页珍藏版)》请在金锄头文库上搜索。

1、现代气压沉箱施工的环境监测及分析【摘 要】现代气压沉箱施工多应用于大城市繁华地段, 为把其对周边环境的影响降到最小, 试点工程对气压沉箱施工进行了环境监测方案, 并对监测结果进行了分析。监测结果表明: 现代气压沉箱施工对周边环境的影响较小, 周边土体、邻近建筑物以及地管线的变位能够控制在允许范围之内。【关键词】地铁隧道 风井 气压沉箱 地下水 监测 地表沉降0 前言随着我国城市化进程的加速, 大量的城市地下建筑物在沿海软土地区兴建, 城市地下空间的开发和利用将越来越成为城市发展的趋势; 同时高层建筑、地铁、港口、桥涵、重型地下构筑物的建设对地下建构筑物和基础埋置深度要求也越来越高, 地下空间开

2、发利用随之也进入了向大深度发展的态势1-4。在城市中心建筑物密集区开挖建设大深度地下空间, 往往面临施工场地狭小、周围重要设施众多的情况; 同时, 地下施工在开挖时往往会引起地下水位的降低, 进而导致周围地基的沉陷, 严重时可能会引起周围地基的塌陷, 给邻近建(构)筑物和地下市政设施带来严重的影响; 另外, 市区地铁隧道、地下高速道路、共同沟以及竖井风井系统工程的施工往往受到各方面的限制。相比之下, 气压沉箱工法在许多情况下能适应上述方面的特殊需求, 因而在工程应用中具有不可替代的竞争力及广泛的应用前景5。本文结合上海市轨道交通 7 号线 12A 标段浦江南浦站浦江耀华站区间中间风井气压沉箱工

3、程进行环境监测分析, 重点研究了气压沉箱施工对周边环境的影响, 以期为今后大型地下工程的设计和施工提供一定的参考。1 施工及监测方案1.1 施工方案该工程根据结构特点采用了六次制作、四次下沉的施工工艺进行沉箱施工。施工中采用了在沉箱外围设置支撑及压沉系统。根据沉箱不同下沉阶段通过在外围采取支撑形式或压沉形式来控制沉箱下沉速率及下沉姿态。在施工过程中,严格气压控制, 同时针对沉箱下沉不同阶段还采取了泥浆减阻, 灌水压重等手段进行施工过程控制。主要施工工况如表 1 所示。1.2 监测方案在施工期间对沉箱周围土体的水平与垂直、地下水位、孔隙水压力等进行了测量, 并对相邻的煤气管、建筑物进行了沉降监测

4、。施工场地及监测点平面布置如图 1 所示。2 监测结果分析2.1 土体侧移在沉箱周围共布置 8 个土体侧移测孔, 北侧 3 孔(T5、T6 和 T7), 西侧 4 孔(T1T4), 东南侧 1 孔(T8)。8 个测孔在不同工况下的变形曲线如图 2 所示。总体而言, 开始 3 个工况下所有测孔土体的侧移均较小, 量值一般在5 mm 以内; 各测孔均在工况 4 下侧向位移最大。所有 8 个测孔中, T1 测孔土体的水平位移最大, 工况 4 下的位移达到 - 27.24 mm。从图中可以看出, 测孔距沉箱越远, 土体侧移相对越小。2.2 地表沉降不同施工工况下各断面地表沉降如图 3 所示。从 4 个

5、断面的地表沉降曲线可以看出, 各个断面的最大地表沉降点均在最靠近沉箱的测点, 随着距沉箱边距离的增加, 各测点的地表沉降逐渐减小。最大沉降点位于 4 号断面的 D4- 2 测点, 其最大沉降达 - 28 mm。2.3 土体分层沉降在沉箱两侧共布置 6 个土体分层沉降测孔, 各测孔土体分层沉降如图 4 所示。不同深度处各测孔的沉降规律基本一致, 沉降量同时增加或减小。图 3 和图 4 监测结果均表明沉箱施工周围土体沉降的影响很小。2.4 邻近建筑物沉降邻近建筑物各测点沉降时程曲线如图 5 所示。沉箱施工过程中, 最靠近施工位置的 J1- 1 的相对沉降值最大, 其最大沉降达 - 8.36 mm,

6、 发生在工况 1, 该测点在工况 4 下沉降值也较大, 达 - 8.03 mm。其余各测点的沉降值均较小, 一般在2 mm 之间, 说明沉箱施工对这些测点沉降的影响较小。2.5 管线沉降邻近管线各测点在沉箱施工期间的沉降曲线如图 6 所示。就沉降曲线的整体形状而言, 沉箱施工对各管线变形的影响并不大, 且各管线测点的垂直变形并无明显的变化规律。管线各测点中最大沉降点为 M3 测点, 其最大沉降为- 5.4 mm, 发生在工况 4; 各测点中最大上抬位置在 M5 测点,其最大上抬位移为 4.0 mm, 发生在工况 3。2.6 地下水位沉箱周围水位测点水位的相对变化如图 7 所示。工况 1 和工况

7、 2, 沉箱下沉深度较浅, 沉箱底部施工施加的气压也较小, 气压平衡作用效应不明显, 因此地下水位变化幅度不大, 其中 SW2 测点的最大水位下降幅度仅为 - 37.8 mm; 随着箱体的第三次下沉, 所有测点的水位迅速上升, 且各测点水位的上升幅度相近, 工况 3 下最高水位点为 SW3 测点, 其水位相对于初始水位上升了 91.7 mm; 箱体第四次下沉后期,各测点水位相对于工况 3 有稍许的下降, 但水位仍高于初始水位。2.7 孔隙水压力沉箱周围测点孔隙水压力变化如图 8 所示。距地表越近, 孔压的变化量越大。距沉箱最近的两个测点 SY01 测孔最大孔压变化量为 10.67 kPa, 深度 - 6 m; SY02 测孔最大孔压变化量为 24.38 kPa, 深度 - 6 m。整体而言, 从工况 2 开始孔隙水压力的变化值较大, 与地下水位的变化原因一致。3 结语整体沉箱施工期间, 沉箱周边土体侧移、地表收分层沉降、地下水位及孔隙水压力变化均较小, 施工场地周围建(构)筑物和地下管线并未发生过大的变形和位移, 说明气压沉箱工况能够有效地减小施工对周边环境的影响, 从而进一步证明气压沉箱式法在工程应用中具有不可替代的竞争力及广泛的应用前景。

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 生活休闲 > 科普知识

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号