外文翻译--驱动轮输送带的牵引力与滑动的比较-精品

上传人:n**** 文档编号:37237350 上传时间:2018-04-09 格式:DOC 页数:21 大小:1.02MB
返回 下载 相关 举报
外文翻译--驱动轮输送带的牵引力与滑动的比较-精品_第1页
第1页 / 共21页
外文翻译--驱动轮输送带的牵引力与滑动的比较-精品_第2页
第2页 / 共21页
外文翻译--驱动轮输送带的牵引力与滑动的比较-精品_第3页
第3页 / 共21页
外文翻译--驱动轮输送带的牵引力与滑动的比较-精品_第4页
第4页 / 共21页
外文翻译--驱动轮输送带的牵引力与滑动的比较-精品_第5页
第5页 / 共21页
点击查看更多>>
资源描述

《外文翻译--驱动轮输送带的牵引力与滑动的比较-精品》由会员分享,可在线阅读,更多相关《外文翻译--驱动轮输送带的牵引力与滑动的比较-精品(21页珍藏版)》请在金锄头文库上搜索。

1、附录1驱动轮输送带的牵引力与滑动的比较A.J.G. Nuttall*,G. Lodewijks 迪福特技术大学, 传送技术和物流管理, Mekelweg 2 , 2623 CD迪福特 ,荷兰接收于 2005 年7月 13 日;在校接收于 2005 年12月 15 日;被承认于2006 年1月2日,网上发布于2006年3月2日摘要:本文提出了用于水平带式输送机的现有模型的扩展, 描述有弯曲表面的输送带的驱动轮的牵引力和滑动之间的关系。模型包括以麦 克斯韦元件形式运行表面的具有黏弹性的橡胶。应用正确的要素之后,主要是 解决彼此相连各元素(原来没有建模的)之间的交互作用, 实验的结果表明模型能够很好

2、地匹配,则带速在一定的速度范围内对牵引力有小的作用。 2006 Elsevier 公司版权所有。关键词: 旋转关系;牵引力;粘弹性;麦克斯韦模型; 带式输送带; 弯曲带表面1.引言传统的带式输送机在输送大块矿石时,在输送系统的首部或尾部都会有一 个缠有皮带的动力滑轮的驱动装置,如图1所示。这表明输送带系统的驱动结构 中有单一的或是双重的驱动装置。但是,当需要两个以上的驱动配置时,问题就 会出现。由于驱动轮不能放置在沿运输带的绳缆任意位置,不影响矿石的滚落, 不能充分利用分散动力系统的优点。 在多种复杂的驱动系统中,可选择性的驱动方法可以提供更大的布局柔性 ,还能增强直接作用在皮带表面的驱动轮性

3、能,产生所需的牵引力。例如在Ener kaBecker 系统(简称E BS)中,都会有一些带有装在输出轴上驱动轮的马达形成一对驱动力,实际上可以放在沿皮带的任意位置。Bekel 1也提议使传统的驱动带底部变硬来弄平传送带,它可以用一对驱动轮带动起来。在传送带沿线任意位置设立驱动装置的自由度可以使系统设计者们有机会 在部分组件出现故障时,通过平衡已安装的驱动力来控制皮带上的张力。这就 是降低张力的关键,可以用同样轻型的皮带构造从而忽略传送带的长度。这将 会降低成本,增强结构的柔性,也使组件的标准化成为可能。 对于常规的驱动带和驱动轮,如在E BS中的,产生的牵引力是由皮带与滑轮或驱动轮表面接触力

4、和摩擦系数决定的 。但是,随着驱动轮的外形使得磨擦不完全来自于皮带的张力,而是源自皮带与 其运送矿石的重量和压缩轴产生的力。在常规的传送带中,由于驱动滑轮欧拉 公式2的不同,常用来决定最大可转移的有效牵引力,而不能用于一个传送驱 动轮输送机。所以,一个新的模型需要明确表述,考虑材料、皮带的几何性质和 驱动。图1本文提出的就是一个像E BS的模型,描述了牵引与传送带驱动轮中滚动接触补片的滑动之间的关系。模 型包括橡胶的黏弹性,作为一个Maxwell元素的阵列,与过去常用在Bekel 1系统中的弹性方法相比较。模型都与试验结果相比较。牵引-滑动关系是有作用的,因为牵引和滑动与正常的摩擦力相结合,极

5、大影响皮带表面的磨损率。在寿命内,为了防止带损坏,设定允许的最大限度磨损率,这可 导致降低最大可转移的牵引。2.基于粘弹性的摩擦力建模很多研究者都用Maxwell模型来量化滚筒在富有粘弹性表面滚动的能量消耗3 5,与输送带穿过托辊相比。当皮带通过托辊时,橡胶表面迅速伸缩。因为橡胶 表面材料经常会产生粘弹性,从而导致压力的不对称分配,也就是产生了阻力。 通过实现粘弹性来推测阻力,Maxwell模型主要用在三种参数格式。其中一种比 较特殊,由Lodewijks6描述,以Winkler的基础或铺垫结合为三个参数化Maxwel l模型包括弹簧,彼此没有相互作用。因为在相互作用的组件之间的剪力无法测 算

6、可以忽略不计,从而使计算变得简单。尽管简化的结果可以表明输送带的运 行能够产生令人满意的效果。所以,Maxwell模型参数同Winker的基础结合将会 提供一个研究分析传送带驱动轮牵引力与滑动力关系的起点。 为了在E BS中能更详细描述出驱动轮对牵引力的影响,模型提供了两种途径。首先,Ma xwell要素的数量增加到可以在整个接触补片过程中提供模型与橡胶特性之间 的有效结合。其次,一个毛刷模型也用于描述汽车轮胎4的橡胶轮胎面的作用 也常来用来计算驱动轮与皮带之间由于滑动而产生的剪力。 这三个参数Maxwell模型,都是由系列中的单个的Maxwell要素组成,满足 传统的输送带要求,因为在托辊与

7、输送带之间可以描述为一系列的接触,由于 持续的接触长度覆盖了接触区域使模型只能通过单一激振频率配合,使调整单 个Maxwel时间常数到这个激振频率成为可能。但是,在E BS中,弯曲的运行表面,有一个椭圆的接触区域。基于在椭圆片中不同的接触 长度,模型只好以一定范围的频率配合。图2即描述了模型是怎样演示皮带穿过 托辊或驱动轮变化的过程。一个以角速度运转的刚性滚筒施加到以皮带速度为运转的弯曲的黏弹性表面上,形成了椭圆的接触区域。bV在激振范围内,为配合以橡胶的粘弹性的模型,产生了附加的Maxwell要素。一系列Maxwell要素近似黏弹性的特性,每个包括以以硬度为的弹簧的弹iE力度和一个减幅系数为

8、的减震器。如图3所示。理想的模型应该有无限多的元i素组成,但是,由于实际情况与计算的原因,理想状况通过一定数量的要素到m 简化了。图2图3 Maxwell模型要素需要通过调整来适应在测量振荡试验中的带的黏弹性的 复杂弹性模量,材料承受正弦交变应力和应变8,9的情况下。图4表明橡胶用于E BS皮带的作用下的实验结果。这些实验结果有代表性地表达了如存储能模量 ,损失模量和损失因素等内容。同时,提出了复杂的弹性模量和与其EE tg相关的内容如下: 一定数量的用在模型中的Maxwell要素m依赖于想得到的频率范围内所需 复杂弹性模量的精确度。以可能的输送带的输送速度为,近似接触6 . 1sm/10 长

9、度为0.02m,激振频率范围从80到。当要素的数量增加时,精确度也随500hz 之增加。但是,有越多要素的模型也会变得越复杂,增加更多计算消耗的时间, 搜索开始条件以配合程序难度增加时对优化路线很好的集中。此外,由于执行 最小二乘法,要素的最大数量由实验测量数据所限制,从而不可能有比数据节点更多的模型参数。 图4表示当使用大量的不同的Maxwell要素时,模型是怎样适应测量E BS黏弹性特性的。 图形清楚地说明了有一个要素(或是三个参数值)的最简单模型产生不满意 的在之间近似值同改善的三个要素(或七个参数值)之间的区别srad /100010 。有七参数的模型最终选为好的匹配,用于进一步的计算

10、中。图4弹力属性示意图3正常的应力分布当在牵引极限内驱动轮施加了牵引力到传送带上,粘性和滑动区域存在于 接触平面。在粘性区由于施加的牵引力只有橡胶表面变形,而在滑动区域因为 表面的摩擦极限已经达到,橡胶表面也滑过轮的表面。为了确定区域的位置,根 据库伦德涣汤定理,再建模时加入摩擦。(11)yxyx,式中为摩擦系数。 要解这个方程,在接触面压力分布(x,y)应首先确定,接触面压力由Z轴方 向的粘弹性表面的变形定义(见图 2 ) 。对于这一计算的假设为剪应力不影响正常应力的分布,也由Johnson3使用。 如果接触区域与滚筒曲面和橡胶表面 (如和)相比很小,刚刚压入表面的距离为,然后接触面的变形可

11、x1R2Ry 0Z以描述如下:(12)以恒定皮带的带速的稳定状态下,以厚度h的Winkle基本理论 b tx bdd和变形方程(12)(),对于麦克斯韦要素的微分方程可以表示如下式: hyxw,(13) ii bii ii hRxEE x 该微分方程可由设定在超前边缘之间的接触面的压力等于零或( ya) = ya,0时求解,因为在第一个接触点根本没变形出现。求解方程揭示了在接触平面内 压力2201,1 exp2m ii i iiiiEE Kxax yaxxaaKRhhRK和 (14)ibi iEK合力可由分布在整个接触区域的应力分布的合力或式zF. (15) dxdyyxFccyaybz ,计

12、算。尾缘的接触面位置的确定可设定值为零。 ybyx,4.剪应力分布有了计算的压力分布和测得的摩擦系数,大部分资料可以确定在滑移带内 的剪应力由公式(11)确定。下一个重要步骤是找出剪应力在整个接触面分布是 粘带的剪应力计算。在粘带,接触表面无无滑动发生。然而,牵引力施加时,在 驱动轮子的外径和皮带之间出现表观速差或蠕变。这个表观速率也称为蠕变速 率并定义为: (16)bibR 式中是驱动车轮的角速度。 蠕变速率与剪切角有关,由下列公式计算:(17)hyx为了在粘性区域建立蠕变速率和剪应力分布的关系,麦克斯韦模型与刷子 模型相结合来描述剪切效应。如图5中刷子模型的描述是接触区域内带的具有 代表性

13、的简化。它分为刚性元素铰接,并由放置在其基础上扭转的弹簧支撑。扭 转弹簧的特性也是基于Maxwell模型与图3种的弹簧元素相似。 以剪切模量,剪应力和剪切角替换公式(1)、(2)和(6)中的弹性模量G ,应力应变,分别导出了描述行为的基础元素。在稳态条件下,使用变形E 方程(17)的微分方程描述每个麦克斯韦剪切元素可以写成:(18)hGG xi bii ii 为了获得黏弹性剪切参数,必须指导进行附加的振动试验,在橡胶试验中 试样承受的剪应力和应变。 然而,事实上,由于没有结果的剪切试验是可行的,剪切参数是来自正常应力试 验和在如下列公式帮助下转换得到:(19)12EG如果假定粘性区域开始于接触

14、面的先导边缘,可以找到微分方程(18)的解 决方案,在粘带内屈服剪应力为:(20) maib iibi stickaxG hxaGhyxexp1,0无论是粘性区和滑移区的分布现在可以由整合计算每个区域分开计算的剪 应力(21) dydxyxdxyxccyybyaysticktraction 1)(,其中代t1(y)表粘性区到滑动区过渡线。它代表了那里边剪应力到达边界摩擦,可以求解:(22)ytytstrick,115.修正系数修正系数fs是为了弥补这样的事实,即在相邻弹簧元素Winkler基础不包含 剪切效应,以层的实际刚度来配合模型的刚度。在这种情况下,驱动车轮以及带 间的速度差很小,尾缘滑

15、移区变得微乎其微。由于在接触区域几乎没有滑移,发 生速差或蠕变主要由由层刚度决定。相应蠕变速率的极限,由约翰逊3获得,用半空间近似,是: 或 ZiRFaF2(23)aRFFZ i 2式中和接触面宽度的每单位长度来测量。 iF ZF正应力可表示为接触区域先导边缘距离的函数。bekel iF1从下从列公式得出,用赫兹公式:(24) ERFaZ 218 是静态测量的弹性模量。与此方程正应力从公式 E ZF(23)中消去。为了配合刚度的刷子模型, 切线在开始于模型的牵引力曲线与公式(23)描述的蠕变曲线相匹配,其可由下 式计算(25)式中和是修正系数。sf由式(23)-(25)合并消去,给出如下修正系数: tf模型的刚度由公式(26)中的系数测量的麦克斯韦参数补偿。6.实验验证在E BS和验证模型中驱动状态下,进行实验测量牵引和滑移的实际关系。试验过程 中,用到两个轮子,见图

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 电子/通信 > 综合/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号