微积分基础教程

上传人:豆浆 文档编号:37133966 上传时间:2018-04-07 格式:DOC 页数:7 大小:43KB
返回 下载 相关 举报
微积分基础教程_第1页
第1页 / 共7页
微积分基础教程_第2页
第2页 / 共7页
微积分基础教程_第3页
第3页 / 共7页
微积分基础教程_第4页
第4页 / 共7页
微积分基础教程_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《微积分基础教程》由会员分享,可在线阅读,更多相关《微积分基础教程(7页珍藏版)》请在金锄头文库上搜索。

1、微积分教程微积分(Calculus)是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。 它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求 导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可 用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提 供一套通用的方法。 微积分的基本介绍微积分学基本定理指出,求不定积分与求导函数互为逆运算把上下限代入不定积分即 得到积分值,而微分则是导数值与自变量增量的乘积,这也是两种理论被统一成微积分学 的原因。我们可以以两者中任意一者为起点来讨论微积分学,但是在教学中,

2、微分学一般 会先被引入。 微积分学是微分学和积分学的总称。它是一种数学思想, 无限细分就是微分, 无 限求和就是积分。十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的 工作,分别独立地建立了微积分学。他们建立微积分的出发点是直观的无穷小量,但是理 论基础是不牢固的。因为“无限”的概念是无法用已经拥有的代数公式进行演算,所以, 直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论, 这门学科才得以严密化。 学习微积分学,首要的一步就是要理解到, “极限”引入的必要性:因为,代数是人们 已经熟悉的概念,但是,代数无法处理“无限”的概念。所以,必须要利用代数处理代

3、表 无限的量,这时就精心构造了“极限”的概念。在“极限”的定义中,我们可以知道,这 个概念绕过了用一个数除以 0 的麻烦,相反引入了一个过程任意小量。就是说,除的数不 是零,所以有意义,同时,这个小量可以取任意小,只要满足在德尔塔区间,都小于该任 意小量,我们就说他的极限为该数你可以认为这是投机取巧,但是,他的实用性证明, 这样的定义还算比较完善,给出了正确推论的可能性。这个概念是成功的。 微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、 经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。特别是计 算机的发明更有助于这些应用的不断发展。 客观世界

4、的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中 引入了变量的概念后,就有可能把运动现象用数学来加以描述了。 由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支 就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十 分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。 微积分的本质【参考文献】 刘里鹏.从割圆术走向无穷小揭秘微积分 ,长沙:湖南科学技术 出版社,2009 1用文字表述: 增量无限趋近于零,割线无限趋近于切线,曲线无限趋近于直线,从而以直代曲,以 线性化的方法解决非线性问题,这就是微积分理论的精髓所在。

5、 2用式子表示: 微积分的基本方法微积分的基本原理告诉我们微分和积分是互逆的运算,微积分的精髓告诉我们我们之 所以可以解决很多非线性问题,本质的原因在于我们化曲为直了,现实生活中我们会遇到 很多非线性问题,那么解决这样的问题有没有统一的方法呢? 经过研究思考和总结,笔者认为,微积分的基本方法在于:先微分,后积分。 笔者所看到的是,现在的教材没有注意对这些基本问题的总结,基本上所有的教材每 讲到积分时都还重复古人无限细分取极限的思想,讲到弧长时取极限,讲到面积时又取极 限,最后用一个约等号打发过去。这样一来不仅让学生听得看得满头雾水,而且很有牵强 附会之嫌,其实懂得微积分的本质和基本方法后根本不

6、需要再那么重复。 微积分学的建立从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经 产生了。 公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线 下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。作为微分学基础的极 限理论来说,早在古代以有比较清楚的论述。比如我国的庄周所著的庄子一书的“天 下篇”中,记有“一尺之棰,日取其半,万世不竭” 。三国时期的刘徽在他的割圆术中提到 “割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。 ”这些都是 朴素的、也是很典型的极限概念。 到了十七世纪,有许多科学问题需要解决,这些问题也就

7、成了促使微积分产生的因素。 归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求 即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最 小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一 个体积相当大的物体作用于另一物体上的引力。 十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量 的研究工作,如法国的费马、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开 普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。 十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿

8、和德国数学家莱布尼茨分 别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他 们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心 问题) ,一个是求积问题(积分学的中心问题)。 牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无 穷小分析,这正是现在数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运 动学来考虑,莱布尼茨却是侧重于几何学来考虑的。 牛顿在 1671 年写了流数法和无穷级数 ,这本书直到 1736 年才出版,它在这本书里 指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小

9、元素 的静止集合。他把连续变量叫做流动量,把这些流动量的导数叫做流数。牛顿在流数术中 所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法) ;已知运动的速 度求给定时间内经过的路程(积分法)。 德国的莱布尼茨是一个博才多学的学者,1684 年,他发表了现在世界上认为是最早的 微积分文献,这篇文章有一个很长而且很古怪的名字一种求极大极小和切线的新方法, 它也适用于分式和无理量,以及这种新方法的奇妙类型的计算 。就是这样一篇说理也颇含 糊的文章,却有划时代的意义。它已含有现代的微分符号和基本微分法则。1686 年,莱布 尼茨发表了第一篇积分学的文献。他是历史上最伟大的符号学者之一,他

10、所创设的微积分 符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的。 微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运 用微积分,往往迎刃而解,显示出微积分学的非凡威力。 前面已经提到,一门科学的创立决不是某一个人的业绩,他必定是经过多少人的努力 后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的。微积分也是这样。 不幸的是,由于人们在欣赏微积分的宏伟功效之余,在提出谁是这门学科的创立者的 时候,竟然引起了一场悍然大波,造成了欧洲大陆的数学家和英国数学家的长期对立。英 国数学在一个时期里闭关锁国,囿

11、于民族偏见,过于拘泥在牛顿的“流数术”中停步不前, 因而数学发展整整落后了一百年。 其实,牛顿和莱布尼茨分别是自己独立研究,在大体上相近的时间里先后完成的。比 较特殊的是牛顿创立微积分要比莱布尼茨早 10 年左右,但是正式公开发表微积分这一理论, 莱布尼茨却要比牛顿发表早三年。他们的研究各有长处,也都各有短处。那时候,由于民 族偏见,关于发明优先权的争论竟从 1699 年始延续了一百多年。 应该指出,这是和历史上任何一项重大理论的完成都要经历一段时间一样,牛顿和莱 布尼茨的工作也都是很不完善的。他们在无穷和无穷小量这个问题上,其说不一,十分含 糊。牛顿的无穷小量,有时候是零,有时候不是零而是有

12、限的小量;莱布尼茨的也不能自 圆其说。这些基础方面的缺陷,最终导致了第二次数学危机的产生。 直到 19 世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认真研究, 建立了极限理论,后来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为 了微积分的坚定基础。才使微积分进一步的发展开来。 任何新兴的、具有无量前途的科学成就都吸引着广大的科学工作者。在微积分的历史 上也闪烁着这样的一些明星:瑞士的雅科布贝努利和他的兄弟约翰贝努利、欧拉、法国 的拉格朗日、柯西 欧氏几何也好,上古和中世纪的代数学也好,都是一种常量数学,微积分才是真正的 变量数学,是数学中的大革命。微积分是高等数学的

13、主要分支,不只是局限在解决力学中 的变速问题,它驰骋在近代和现代科学技术园地里,建立了数不清的丰功伟绩。 微积分的基本内容研究函数,从量的方面研究事物运动变化是微积分的基本方法。这种方法叫做数学分 析。 本来从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习 惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道 是指微积分。微积分的基本概念和内容包括微分学和积分学。 微分学的主要内容包括:极限理论、导数、微分等。 积分学的主要内容包括:定积分、不定积分等。 微积分是与科学应用联系着发展起来的。最初,牛顿应用微积分学及微分方程对第谷 浩瀚的天文观测数

14、据进行了分析运算,得到了万有引力定律,并进一步导出了开普勒行星 运动三定律。此后,微积分学成了推动近代数学发展强大的引擎,同时也极大的推动了天 文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分 支中的发展。并在这些学科中有越来越广泛的应用,特别是计算机的出现更有助于这些应 用的不断发展。 一元微分定义: 设函数 y = f(x)在某区间内有定义,x0 及 x0 + x 在此区间内。如果函数的增 量 y = f(x0 + x) f(x0)可表示为 y = Ax0 + o(x0)(其中 A 是不依赖于 x 的常数) ,而 o(x0)是比 x 高阶的无穷小,那么称函数

15、f(x)在点 x0 是可微的,且 Ax 称作 函数在点 x0 相应于自变量增量 x 的微分,记作 dy,即 dy = Adx。 通常把自变量 x 的增量 x 称为自变量的微分,记作 dx,即 dx = x。于是函数 y = f(x)的微分又可记作 dy = f(x)dx。函数的微分与自变量的微分之商等于该函数的导数。因此, 导数也叫做微商。 几何意义设 x 是曲线 y = f(x)上的点 M 的在横坐标上的增量,y 是曲线在点 M 对应 x 在 纵坐标上的增量,dy 是曲线在点 M 的切线对应 x 在纵坐标上的增量。当|x|很小时,|ydy|比|y|要小得多(高阶无穷小),因此在点 M 附近,

16、我们可以用切线段来近似代替 曲线段。 多元微分多元微分又叫全微分,是由两个自变量的偏导数相对应的一元微分的增量表示的。 Z=A*X+B*Y+()为函数 Z 在点(x、y)处的全增量, (其中 A、B 不依赖于 X 和 Y,而只与 x、y 有关,=(x2+y2)(12),A*X+B*Y 即是 Z 在点的全 微分。 总的来说,微分学的核心思想便是以直代曲,即在微小的邻域内,可以用一段切线段 来代替曲线以简化计算过程。 积分有两种:定积分和不定积分。 定积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,定积分作 用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法 是积分特殊的性质决定的。 一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函 数。 其中:F(x) + C = f(x) 一个实变函数在区间a,b上的定积分,是一个实数。它等于该函数的一个原函数在 b 的值减去在 a

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 行业资料 > 其它行业文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号