高中物理生活中的圆周运动试题类型及其解题技巧及解析

上传人:灯火****19 文档编号:157357357 上传时间:2020-12-22 格式:DOCX 页数:14 大小:140.17KB
返回 下载 相关 举报
高中物理生活中的圆周运动试题类型及其解题技巧及解析_第1页
第1页 / 共14页
高中物理生活中的圆周运动试题类型及其解题技巧及解析_第2页
第2页 / 共14页
高中物理生活中的圆周运动试题类型及其解题技巧及解析_第3页
第3页 / 共14页
高中物理生活中的圆周运动试题类型及其解题技巧及解析_第4页
第4页 / 共14页
高中物理生活中的圆周运动试题类型及其解题技巧及解析_第5页
第5页 / 共14页
点击查看更多>>
资源描述

《高中物理生活中的圆周运动试题类型及其解题技巧及解析》由会员分享,可在线阅读,更多相关《高中物理生活中的圆周运动试题类型及其解题技巧及解析(14页珍藏版)》请在金锄头文库上搜索。

1、高中物理生活中的圆周运动试题类型及其解题技巧及解析一、高中物理精讲专题测试生活中的圆周运动1 如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点 D点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP,其形状为半径R0.45m 的圆环剪去左上角 127 的圆弧, MN 为其竖直直径, P 点到桌面的竖直距离为R, P点到桌面右侧边缘的水平距离为1.5R若用质量 m1 0.4kg 的物块将弹簧缓慢压缩到C点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m2 0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x 4t

2、2t 2,物块从 D 点飞离桌面后恰好由P 点沿切线落入圆轨道g 10m/s 2,求:(1)质量为 m2 的物块在 D 点的速度;(2)判断质量为 m2 0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为 m2 0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功.【答案】( 1) 2.25m/s (2)不能沿圆轨道到达M 点 ( 3) 2.7J【解析】【详解】(1)设物块由 D 点以初速度 vD 做平抛运动,落到P 点时其竖直方向分速度为:vy2gR2 100.45 m/s 3m/svy4tan53 vD3所以: vD 2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速

3、度,则mgm v2 ,R解得: vgR32 m/s2物块到达P 的速度:vPvD2vy2322.252 m/s 3.75m/s若物块能沿圆弧轨道到达M 点,其速度为vM ,由 D 到 M 的机械能守恒定律得:1 m2vM21 m2vP2m2g 1 cos53R22可得: vM20.3375 ,这显然是不可能的,所以物块不能到达M 点(3)由题意知x 4t - 2t2,物块在桌面上过B 点后初速度vB 4m/s ,加速度为:a4m/s2则物块和桌面的摩擦力:m2 gm2 a可得物块和桌面的摩擦系数 :0.4质量 m1 0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B点

4、,由能量守恒可弹簧压缩到C 点具有的弹性势能为:Epm1gxBC0质量为 m20.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:Epm2 gxBC1 m2vB 22可得, xBC 2m在这过程中摩擦力做功:W1m2gx BC1.6J由动能定理, B 到 D 的过程中摩擦力做的功:W 21 m2vD21 m2v0222代入数据可得:W2 - 1.1J质量为 m20.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功WW1W22.7J即克服摩擦力做功为2.7 J.2 如图所示,光滑轨道CDEF 是一 “过山车 ”的简化模型,最低点D 处入、出口不重合,E 点是半径为

5、R 0.32m的竖直圆轨道的最高点, DF 部分水平,末端 F 点与其右侧的水平传送带平滑连接,传送带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m物块 B静止在水平面的最右端F 处质量为 mA 1kg 的物块 A 从轨道上某点由静止释放,恰好A B通过竖直圆轨道最高点E,然后与发生碰撞并粘在一起若的质量是A的k倍,BB、与传送带的动摩擦因数都为0.2 ,物块均可视为质点,物块A 与物块 B 的碰撞时间极短,取 g 10m / s2 求:( 1)当 k 3 时物块 A、B 碰撞过程中产生的内能;( 2)当 k=3 时物块 A、B 在传送带上向右滑行的最远距离;(3)讨论 k 在不同数

6、值范围时,A、B 碰撞后传送带对它们所做的功W 的表达式【答案】 (1) 6J( 2) 0.25m( 3) W2 k1 J Wk 22k 152 k1【解析】(1)设物块 A 在 E 的速度为 v0 ,由牛顿第二定律得: mA gmAv02,R设碰撞前 A 的速度为 v1 由机械能守恒定律得:2mA gR1 mAv021 mAv12 ,22联立并代入数据解得:v14m / s ;设碰撞后 A、B 速度为 v2 ,且设向右为正方向,由动量守恒定律得mAv1 mAm2 v2 ;解得: v2mAv1141m / s ;mA mB1 3由能量转化与守恒定律可得:Q1 mAv121mAmBv22 ,代入

7、数据解得 Q=6J ;22(2)设物块 AB 在传送带上向右滑行的最远距离为s,由动能定理得:mAmBgs1 mA mBv22 ,代入数据解得 s0.25m ;2(3)由式可知:v2mAv14m / s ;mA mB1k(i )如果 A、 B 能从传送带右侧离开,必须满足1 mAmBv22mAmB gL ,2解得: k 1,传送带对它们所做的功为:WmAmBgL2 k1 J;(ii )( I)当 v2v 时有: k3 ,即 AB 返回到传送带左端时速度仍为v2 ;由动能定理可知,这个过程传送带对AB 所做的功为: W=0J,(II)当 0 k时, AB 沿传送带向右减速到速度为零,再向左加速,

8、当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧在这个过程中传送带对AB 所做的功为 W1 mAmBv21 mAmBv22 ,22k 22k15解得 Wk1;2【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解 A 恰好通过最高点E,由牛顿第二定律求出A 通过 E 时的速度,由机械能守恒定律求出 A 与 B 碰撞前的速度,A、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离根据A、B 速度与传送带速度间的关系分析A

9、B 的运动过程,根据运动过程应用动能定理求出传送带所做的功,l,质量为 m 的小球与两根不可伸长的轻绳a,b 连接 ,两轻绳的另一端分3 如图所示 半径为4别固定在一根竖直光滑杆的A,B 两点上 .已知 A,B 两点相距为 l,当两轻绳伸直后A、B 两点到球心的距离均为l,重力加速度为g(1)装置静止时 ,求小球受到的绳子的拉力大小T;(2)现以竖直杆为轴转动并达到稳定(轻绳a,b 与杆在同一竖直平面内)小球恰好离开竖直杆时,竖直杆的角速度0 多大 ?轻绳 b 伸直时 ,竖直杆的角速度多大?【答案】 (1)415015g2gT15mg (2)=215ll【解析】【详解】(1)设轻绳 a 与竖直

10、杆的夹角为15cos4对小球进行受力分析得mgTcos解得:T 4 15 mg15(2)小球恰好离开竖直杆时,小球与竖直杆间的作用力为零。可知小球做圆周运动的半径为lr=4mg tanm 02 r解得 :0= 215g15l轻绳 b 刚伸直时,轻绳a 与竖直杆的夹角为60,可知小球做圆周运动的半径为rl sin60mg tan 60m2r解得 :2g=l轻绳 b 伸直时,竖直杆的角速度2gl4 如图所示,用绝缘细绳系带正电小球在竖直平面内运动,已知绳长为L,重力加速度g,小球半径不计,质量为m,电荷 q不加电场时,小球在最低点绳的拉力是球重的9倍。(1)求小球在最低点时的速度大小;(2)如果在小球通过最低点时,突然在空间产生竖直向下的匀强电场,若使小球在后面的运动中,绳出现松软

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 其它中学文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号