引起重金属污染的因素

上传人:平*** 文档编号:14840972 上传时间:2017-11-02 格式:DOC 页数:11 大小:61.05KB
返回 下载 相关 举报
引起重金属污染的因素_第1页
第1页 / 共11页
引起重金属污染的因素_第2页
第2页 / 共11页
引起重金属污染的因素_第3页
第3页 / 共11页
引起重金属污染的因素_第4页
第4页 / 共11页
引起重金属污染的因素_第5页
第5页 / 共11页
点击查看更多>>
资源描述

《引起重金属污染的因素》由会员分享,可在线阅读,更多相关《引起重金属污染的因素(11页珍藏版)》请在金锄头文库上搜索。

1、http:/ 95,在其余的 5的沉积岩中,约有 80是页岩,15是砂岩, 5是石灰岩。地球上的水量主要是集中在海洋里。海水的化学组成和元素平衡问题,是海洋化学的重要内容之一。海水的化学元素,一方面是由陆地上岩石的风化通过河流而进入海洋,以及火山的喷出物等经由大气的传递而沉降于海洋,另一方面,海水里的元素随同无机及有机的不溶性固体向海底沉降而被除去。海水中任何一种元素的含量,尤其是有地质和生物意义的元素,常常以复杂的方式随时间和空间(水平的和垂直的)而变化。微量元素在海水中存在的形态和含量已被广泛的研究和测定,在这方面已有许多资料数据,这对于了解海洋环境化学是很重要的。决定海水中元素浓度的一个

2、化学要素是溶解度,由于海水中的微量元素的浓度很低,大多数的微量元素都达不到不溶性化合物的溶度积,而呈不饱和状态。但是,钡则是一个例外。由于海水中的硫酸根离子的含量较高,因而硫酸钡处于平衡状态。由于海水中含有大量的氯离子,金、银、汞、铅等元素与氯离子形成水溶性的氯化物络离离子。海水中的微量元素,有的作为构成海洋生物的必须元素而转移到生物体中去,并且逐级转移,同时,这些生物的遗体及分解生成的固体物沉降到海底,在沉降过程中也会有微量元素溶解出来。海水中及海底的微量元素的溶出以及固定,与海洋环境的各种条件有关,因而,在不同地域的海水中或海底堆积物中,微量元素的浓度有明显的差异。随地域不同而浓度不同的元

3、素有钴、银、镍等,但是,锶、钡、铯、铷、铀、钼等元素的含量与地域关系的差异不大。就非污染的淡水而言,其重金属的含量大致一定,但它们的化学形态却有很大的不同。例如,天然水体中可溶性的铅、镉和锌的化学形态有颗粒物状、离子形态、无机和有机络合物以及无机和有机胶体等。一般地说,金属化学元素对水生生物的毒性大小依次为 Hg Ag Cu Cd Zn Pb Cr NiCo,许多实验说明,金属的离子形态要比与有机配位体结合的形态有毒。结合的络合物越稳定,其毒性也越低。重金属的基本化学特性决定重金属在环境中的存在形式。重金属的基本化学特性主要是形成有机配位体和络合物、形成有机金属化合物和参与氧化还原反应。形成络

4、合物的电子供给体是水中或生物体内的氨基、羧基、磷酸根及 SH 等配位基,其结合有不可逆的,但是,原则上来讲是可逆的。有机金属化合物是金属与碳原子共价结合所形成的化合物,与无机形态的化合物相比,其生理活性有显著的不同。参加氧化还原反应的金属,由于其价态发生变化,因此,许多重金属的作用也相应地发生很大的变化。总之,金属元素在环境中存在的形态和转化,是环境化学研究的重要课题之一。目前,研究最多的重金属是汞、镉、铬、铅和砷等。这些重金属是重要的环境污染物,对环境的污染具有潜在的危险性,所以受到人们特别优先的注意。汞 地球岩石圈内汞的丰度约 0.03ppm。自然环境中汞的本底值不高,森林土壤约为 0.0

5、290.10ppm,耕作土壤约为 0.030.07ppm,粘质土壤约为0.030.034ppm。土壤中的汞含量与土壤的形成过程及利用情况有关。随着人类生产活动的不断发展,土壤中的汞含量也在逐渐地发生变化。汞及汞化物广泛地用在制碱、催化、仪表等工业中,因此含汞废水、废碴等均可进入土壤。含汞农药的使用则更直接地使土壤受到汞污染。汞在土壤中的行为主要表现在土壤对汞的固定和释放作用上。汞的固定和释放受土壤条件的影响和制约。如土壤中腐殖质和粘粒的含量不同,对汞的固定作用也呈现出明显的差异。土壤中的腐殖质对汞有很大的亲和性,尤其在 pH 值较低时,汞更易于为土壤有机物所吸收。当 pH 值偏高时,土壤中矿物

6、质对汞的吸附作用相应地增强。土壤去除有机质后,对汞的固定作用会下降。由于土壤对汞有固定作用,使得土壤中相当一部分汞转化为难溶的汞,不易为植物吸收,起到固定贮存的作用。因此可以说,土壤是汞的一个巨大的储存库。在一定的条件下,土壤中固定态的汞还可能释放出来,转变为易于被作物吸收的可给态汞。汞的释放不是单纯的化学过程,而是一个复杂的生物化学过程。用黄土作水稻和小麦的盆栽试验表明,作物各个生长时期,可给态的汞量是不同的,如拔节期达 14.4ppb,齐穗期为 6ppb。最后作物中的含汞量可高达 205ppb。土壤中汞的固定和释放以及作物吸收汞的过程可概括如下:土壤中汞的固定与释放随条件不同而相互转化。为

7、了减少汞对粮食的污染,往往对土壤采取适当的技术措施,使土壤中可给态的汞转化为固定态的汞。例如,施用磷肥一方面可增加土壤的磷素营养,同时还与土壤中的可给态汞作用而生成难溶性的磷酸汞,起固定汞的作用。施用含硫的有机肥料或者硫酸铵,在还原性条件下,也可将土壤中的汞转化为难溶的硫化汞。此外,在酸性土壤中施用石灰来调节土壤的酸度,也有利于形成难溶性的氧化汞。汞在自然界分布很广,但一般丰度不高。水体中的汞浓度约在 ppb 级的水平。如河水中的汞浓度为 1.0ppb,海水中约为 0.3ppb,雨水中约为 0.2ppb 等。但是,受污染的水中浓度往往很高。污染水体中的汞主要来自工业排放的废水以及汞矿床的扩散等

8、。汞在水体中的存在形态与水体的氧化还原特性密切相关。汞在水体中可能存在的化学价态有零价的元素汞( Hg 0)、一价的汞( Hg +)、二价的汞( Hg 2+)。主要是元素汞和二价汞。由于汞有很高的电离势,因此它转化为离子的倾向小于其它金属。在水体还原性较高的区域中,汞不仅以硫络合物及沉淀存在,而且还可以还原为金属汞。在一般情况下,水体中的汞主要是金属汞、氯化汞和氢氧化汞。水体中的无机汞可随着水的流动作迁移运动,或沉降于水底并吸附在底泥中。在微生物作用下,无机汞能够转化为有机汞,即主要转化为一甲基汞和二甲基汞。这就是所谓汞的甲基化作用。汞的甲基化作用可在厌氧条件下发生,也可在好氧条件下发生。在厌

9、氧条件下,主要转化为二甲基汞。二甲基汞难溶于水,但它具有挥发性,易于逸散到大气中。在弱酸性的水环境中,二甲基汞还可转化为一甲基汞;在好氧条件下,则主要转化为一甲基汞。一甲基汞是水溶性物质,易于被生物吸收而进入食物链。当汞排入水体后,其中的一部分为硅藻等浮游生物吸收,而硅藻又是飞蛄等小昆虫的食物,汞于是随硅藻进入昆虫体内并积蓄起来。昆虫死亡后,沉入河底,成为石斑鱼等底层鱼的饵料,汞再次被富集。鳝鱼等食肉鱼类又以石斑鱼为食,于是再一次进行富集。最后,使鲶鱼体内的含汞量可高达 5060 毫克千克。比原来水体中的浓度高万倍以上,比一般鱼类体内含汞量亦高 900 多倍。一般来说,汞通过食物链富集可使某些

10、生物体内的含汞量比水体中的浓度增加几倍至几十万倍。一般水生生物食物链是:浮游植物浮游动物贝类、虾、小鱼大鱼。我国第二松花江汞污染也较严重,鱼体含汞平均达 0.74 毫克干克。渔民含汞量已达到水误病患者的低限水平。这是一个很值得重视的问题。汞可通过吸入、饮水和食物摄入,其中最主要的是通过食物链摄入。由于甲基汞能在食物链中被高度浓集,因此,即使环境中甲基汞的浓度异常低微,通过食物链后,也能将较大量的甲基汞输送到人体内,从而造成巨大危害。汞在体外与硫化物有高度亲和性,可结合成不溶解的硫比汞。汞进入人体后,也有类似的特性。汞离子与体内的流基(-SH)有很强的亲和性,结合形成巯醇盐。体内含巯基最多的是蛋

11、白质,如脑的灰质部分含量最多,因此汞也就最易积存在大脑中,引起以神经损害为主的病症。急性汞中毒常由于误食含汞物质引起,表现为腹痛、呕吐、水和电解质丧失及休克等。若吸入高浓度的汞则可发生胸痛、咳嗽、呼吸困难等症状。慢性汞中毒多由职业性接触引起,表现为神经系统症状和胃肠道反应。环境污染导致的中毒以甲基汞中毒最为重要。由于甲基汞主要损害神经系统,因而出现诸如头痛、疲乏、健忘、情绪异常等一般症状,随后出现感觉异常、语言障碍、运动失调、视野缩小、听力障碍等甲基汞中毒症状。但是,接触甲基汞量即使很少而未出现中毒症状者,亦可能对身体造成潜在的危害。如妇女摄入少量甲基汞可导致流产、死产,或分娩的婴儿精神迟钝,

12、甚至患先天性水俣病。在水俣病流行期间,曾出现过不少这类先天性痴呆儿。汞污染造成的危害是骇人听闻的,因而有人将汞称为环境污染的“元凶”。汞有机化后的甲基汞也有明显的致畸作用。曾有用甲基汞杀菌剂污染的种子喂猪,孕妇食用含汞猪肉后,其婴儿发生脑麻痹症状者。注射甲基汞也可引起子鼠严重畸形,体外实验还表明,有机汞可使淋巴细胞染色体碎裂。铬 土壤中含铬最估计约为 100ppm 左右。不同类型的土壤含铬量的差异十分悬殊。大致范围在 53000ppm。铬及铬化物在工业上应用较多,如印染、电镀、皮革、化工等行业,都有含铬的废水废碴排出,从而使局部地区受到铬的污染。铬在土壤中的行为受土壤的 pH 值和氧化还原电位

13、的制约。在正常的 pH 值和氧化还原电位(Eh)条件下,铬通常以四种化学状态存在着:三价态的铬有 Cr3+阳离子型和 CrO2-阴离子型;六价态的铬有 Cr2O2-7型和 CrO2-4型两种。在适当的土壤环境条件下,三价形态的铬和六价形态的铬可以互相转化。影响转化的主要因素是土壤的氧化还原状态。一般情况下,土壤中的铬主要以三价态的难溶的氧化物形式存在着,它对作物的可给性比较低。一般在土壤中难以检测出六价态的铬,因为六价态的铬受有机质作用而转化为三价态。当土壤中有机质含量大于 2以上时,六价态的铬几乎全部被还原为三价态。土壤中有机质还原铬的能力随有机质含量的增加而增强。在种植作物的土壤中,一般都

14、存在着有机质,特别是在大量施用有机肥料的土壤中,有机质更多,六价态的铬也就更难检出。铬在土壤水溶液中的溶解度还取决于 pH 值。对于三价态的铬来说,当土壤水溶液的 pH 值上升到 4 以上时,三价铬的溶解度减小;当 pH 值达到 5.5 时,三价铬几乎完全沉淀。对于六价态的铬来说,在溶液中有铅存在时,当 pH 值增加到45 以上,六价铬就开始沉淀析出;当 pH 值接近于 6 时,六价铬化物几乎完全不溶解,生成沉淀物。但是,当 pH 值上升到 8 以上时,六价铬的溶解度又开始增大。从理论上讲,在通气良好的土壤中,三价铬有可能转化为六价铬,但在实际上,很少发现土壤中有六价铬存在。土壤中的铬对农作物的影响与其价态有关。例如,在栽培水稻的水培中加入铬,发现 5ppm 的六价铬便开始对水稻的生长发生危害;10ppm 以上时可观察到明显的危害;六价铬的浓度进一步升高,便发生水稻枯死。然而三价铬的浓度达50ppm 时方可观察到水稻的枯死现象。植物吸收了土壤中的铬以后,主要积蓄在茎叶里,籽实中的铬含量一般都很少。有人曾研究过用含铬废水灌溉的植物体的含铬量,与用河水灌溉的植物相比较,发现胡萝卜含铬要高 10 倍,白菜高4 倍,番茄也高 4 倍。由于铬摄入过量是有毒的,因此我国规定灌溉污水

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 其它办公文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号