基于物联网的智能仓储温湿度检测系统方案

上传人:l**** 文档编号:145619892 上传时间:2020-09-22 格式:DOC 页数:29 大小:402.50KB
返回 下载 相关 举报
基于物联网的智能仓储温湿度检测系统方案_第1页
第1页 / 共29页
基于物联网的智能仓储温湿度检测系统方案_第2页
第2页 / 共29页
基于物联网的智能仓储温湿度检测系统方案_第3页
第3页 / 共29页
基于物联网的智能仓储温湿度检测系统方案_第4页
第4页 / 共29页
基于物联网的智能仓储温湿度检测系统方案_第5页
第5页 / 共29页
点击查看更多>>
资源描述

《基于物联网的智能仓储温湿度检测系统方案》由会员分享,可在线阅读,更多相关《基于物联网的智能仓储温湿度检测系统方案(29页珍藏版)》请在金锄头文库上搜索。

1、. . *实践教学*理工大学计算机与通信学院2014年春季学期物联网综合应用实践课程设计题 目: 基于物联网的智能仓储温湿度检测系统 专业班级: 姓 名: 学 号: 指导教师: 成 绩: 目录摘要3前言4一 基本原理51.1硬件方面51.1.1芯片SHT10介绍51.1.2 CC2530介绍71.2软件方面101.2.1 zigbee协议介绍101.2.2 zigbee协议栈结构11二 系统分析152.1程序流程图152.2具体步骤15三 详细设计163.1 总体软件结构163.2硬件模块设计193.3总体结构软件设计19四 总结27六 致29 摘要 针对现有仓库温湿度检测存在的问题,结合无线

2、传感器网络技术,提出一种基于ZigBee技术的仓库温湿度采集系统设计方法。该系统采用Zigbee无线通信技术结合传感器,通过运用Zigbee协议架构组建无线传感网络,实现主从节点的数据采集和传输,以及一点对多点,两点之间的通信。并详细阐述了基于Zigbee协议栈的中心节点和终端节点的协议传输,主要是从Zigbee协议栈网络层里AODV路由协议着手,阐述在网络层如何通过AODV路由协议进行节点间的连接以及数据的收发。关键字: 仓储环境监测; CC2530; Zigbee协议栈; 无线传感网络前言防潮、防霉、防腐、防爆是仓库日常工作的重要容,是衡量仓库管理质量的重要指标。它直接影响到储备物资的使用

3、寿命和工作可靠性,为保证日常工作的顺利进行,首要问题是加强仓库温度与湿度的监测工作,但传统的方法采用测试器材,通过人工进行检测,这种人工测试方法费时费力、效率低,且测试的温度及湿度误差大,随机性大。因此,仓库的测控无线化、智能化和信息化管理已成为仓库储备技术的发展趋势。本设计是一种基于CC2530和数字温湿度传感器的智能仓储管理系统。即该系统是采用ZigBee无线通信技术结合传感器,并通过运用ZigBee协议构架组建无线传感网络,来实现主从节点的数据采集和传输的,同时,需要在网络层通过AODV路由协议来进行节点间的连接以及数据的收发。总之,基于无线传感技术的无线网络传感器是一种将传感器、控制器

4、、计算能力、通信能力完美的结合于一身的嵌入式设备。它们跟外界的物理环境交互,适时地采集信息,并且将采集到的信息通过无线传感网络传送给远程用户。无线网络传感器一般是由一个低功耗的微控制器(MCU)和若干个存储器,无线电/光通信装置、传感器等组件所集成的,通过传感器及通信装置和它们所处的外界物理环境进行交互。一基本原理本实验将使用 CC2530 读取温湿度传感器 SHT10 的温度和湿度数据,并通过 CC2530 部的 ADC 得到光照传感器的数据,将采样到的温湿度及光照传感器采集数据通过串口发送到CORTEX A8DB开发板上。在CORTEX A8DB开发板上通过软件将采集到的光、湿度、温度值通

5、过曲线描述出来。其中对温湿度的读取是利用 CC2530 的 I/O(P1.0 和 P1.1)模拟一个类 IIC 的过程。其中该系统所使用的SHT10是一款高度集成的温湿度传感器芯片,提供全标定的数字输出。CORTEX A8DB开发板作为最终的显示设备.1.1硬件方面1.1.1芯片SHT10介绍SHT10 是一款高度集成的温湿度传感器芯片, 提供全标定的数字输出。它采用专利的CMOSens 技术,确保产品具有极高的可靠性与卓越的长期稳定性。传感器包括一个电容性聚合体测湿敏感元件、一个用能隙材料制成的测温元件,并在同一芯片上,与 14 位的 A/D 转换器以及串行接口电路实现无缝连接。SHT10

6、引脚特性如下:1. VDD,GND SHT10 的供电电压为 2.45.5V。传感器上电后,要等待 11ms 以越过“休眠”状态。在此期间无需发送任何指令。电源引脚(VDD,GND)之间可增加一个 100nF 的电容,用以去耦滤波。2. SCK 用于微处理器与 SHT10 之间的通讯同步。由于接口包含了完全静态逻辑,因而不存在最小 SCK 频率。3. DATA 三态门用于数据的读取。DATA 在 SCK 时钟下降沿之后改变状态,并仅在 SCK 时钟上升沿有效。数据传输期间,在 SCK 时钟高电平时,DATA 必须保持稳定。为避免信号冲突,微处理器应驱动 DATA 在低电平。需要一个外部的上拉电

7、阻(例如:10k)将信号提拉至高电平。上拉电阻通常已包含在微处理器的 I/O 电路中。向 SHT10 发送命令:用一组“ 启动传输”时序,来表示数据传输的初始化。它包括:当 SCK 时钟高电平时DATA 翻转为低电平,紧接着 SCK 变为低电平,随后是在 SCK 时钟高电平时 DATA 翻转为高电平。后续命令包含三个地址位(目前只支持“000”,和五个命令位。SHT10 会以下述方)式表示已正确地接收到指令:在第 8 个 SCK 时钟的下降沿之后,将 DATA 拉为低电平(ACK位)。在第 9 个 SCK 时钟的下降沿之后,释放 DATA(恢复高电平)。测量时序(RH 和 T):发布一组测量命

8、令(00000101表示相对湿度 RH,00000011表示温度 T)后,控制器要等待测量结束。这个过程需要大约 11/55/210ms,分别对应 8/12/14bit 测量。确切的时间随部晶振速度,最多有15%变化。SHTxx 通过下拉 DATA 至低电平并进入空闲模式,表示测量的结束。控制器在再次触发 SCK 时钟前,必须等待这个“数据备妥”信号来读出数据。检测数据可以先被存储,这样控制器可以继续执行其它任务在需要时再读出数据。接着传输 2 个字节的测量数据和 1 个字节的 CRC 奇偶校验。 需要通过下拉 DATA 为低电平,uC以确认每个字节。所有的数据从 MSB 开始,右值有效(例如

9、:对于 12bit 数据,从第 5 个SCK 时钟起算作 MSB; 而对于 8bit 数据, 首字节则无意义)。用 CRC 数据的确认位,表明通讯结束。如果不使用 CRC-8 校验,控制器可以在测量值 LSB 后,通过保持确认位 ack 高电平, 来中止通讯。在测量和通讯结束后,SHTxx 自动转入休眠模式。 通讯复位时序:如果与 SHTxx 通讯中断,下列信号时序可以复位串口:当 DATA 保持高电平时,触发SCK 时钟 9 次或更多。在下一次指令前,发送一个“传输启动”时序。这些时序只复位串口,状态寄存器容仍然保留。1.1.2 CC2530介绍CC2530 是基于2.4-GHz IEEE8

10、02.15.4、ZigBee 和RF4CE 上的一个片上系统解决方案。其特点是以极低的总材料成本建立较为强大的网络节点。CC2530 芯片结合了RF 收发器,增强型8051 CPU,系统可编程闪存,8-KB RAM 和许多其他模块的强大的功能。如今CC2530 主要有四种不同的闪存版本:CC2530F32/64/128/256,分别具有32/64/128/256KB 的闪存。其具有多种运行模式,使得它能满足超低功耗系统的要求。同时CC2530运行模式之间的转换时间很短,使其进一步降低能源消耗。 CC2530包括了1个高性能的2.4 GHz DSSS(直接序列扩频)射频收发器核心和1个8051控

11、制器,它具有32/64/128 kB可选择的编程闪存和8 kB的RAM,还包括ADC、定时器、睡眠模式定时器、上电复位电路、掉电检测电路和21个可编程I/O引脚,这样很容易实现通信模块的小型化。CC2530是一款功耗相当低的单片机,功耗模式3下电流消耗仅0.2A,在32 k晶体时钟下运行,电流消耗小于1A。CC2530芯片使用直接正交上变频发送数据。基带信号的同相分量和正交分量由DAC转换成模拟信号,经过低通滤波,变频到所设定的信道上。当需要发送数据时,先将要发送的数据写入128B的发送缓存中,是通过硬件产生的。最后经过低通滤波器和上变频的混频后,将射频信号被调制到2.4GHz,后经天线发送出

12、去。CC2530有两个端口分别为TX/RX,RF端口不需要外部的收发开关,芯片部已集成了收发开关。CC2530的存储器ST-M25PE16是4线的SPI通信模式的FLASH,可以整块擦除,最大可以存储2M个字节。工作电压为2.7v到3.6v。CC2530温度传感器模块反向F型天线采用TI公司公布的2.4GHz倒F型天线设计。天线的最大增益为3.3dB,天线面积为25.77.5mm。该天线完全能够满足CC2530工作频段的要求(CC2530工作频段为2.400GHz2.480GHz)。 图1.CC2530芯片引脚CC2530芯片引脚功能AVDD1 28 电源(模拟) 2-V3.6-V 模拟电源连

13、接AVDD2 27 电源(模拟) 2-V3.6-V 模拟电源连接AVDD3 24 电源(模拟) 2-V3.6-V 模拟电源连接AVDD4 29 电源(模拟) 2-V3.6-V 模拟电源连接AVDD5 21 电源(模拟) 2-V3.6-V 模拟电源连接AVDD6 31 电源(模拟) 2-V3.6-V 模拟电源连接DCOUPL 40 电源(数字) 1.8V 数字电源去耦。不使用外部电路供应。DVDD1 39 电源(数字) 2-V3.6-V 数字电源连接DVDD2 10 电源(数字) 2-V3.6-V 数字电源连接GND - 接地 接地衬垫必须连接到一个坚固的接地面。GND 1,2,3,4 未使用的

14、连接到GNDP0_0 19 数字I/O 端口0.0P0_1 18 数字I/O 端口0.1P0_2 17 数字I/O 端口0.2P0_3 16 数字I/O 端口0.3P0_4 15 数字I/O 端口0.4P0_5 14 数字I/O 端口0.5P0_6 13 数字I/O 端口0.6P0_7 12 数字I/O 端口0.7P1_0 11 数字I/O 端口1.0-20-mA 驱动能力P1_1 9 数字I/O 端口1.1-20-mA 驱动能力P1_2 8 数字I/O 端口1.2P1_3 7 数字I/O 端口1.3P1_4 6 数字I/O 端口1.4P1_5 5 数字I/O 端口1.5P1_6 38 数字I/O 端口1.6P1_7 37 数字I/O 端口1.7P2_0 36 数字I/O 端口2.0P2_1 35 数字I/O 端口2.1P2_2 34 数字I/O 端口2.2P2_3 33 数字I/O 模拟端口2.3/32.768 kHz XOSCP2_4 32 数字I/O 模拟端口2.4/32.768 kHz XOSCRBIAS 30 模拟I/O 参考电流的外部精密偏置电阻RESET_N 20 数字输入 复位,活动到低电平RF_N 26 RF I/O RX 期间负RF 输入信号到LNARF_

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 工作范文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号