感应电机矢量控制 江南大学

上传人:灯火****19 文档编号:142981778 上传时间:2020-08-25 格式:DOC 页数:12 大小:865.01KB
返回 下载 相关 举报
感应电机矢量控制 江南大学_第1页
第1页 / 共12页
感应电机矢量控制 江南大学_第2页
第2页 / 共12页
感应电机矢量控制 江南大学_第3页
第3页 / 共12页
感应电机矢量控制 江南大学_第4页
第4页 / 共12页
感应电机矢量控制 江南大学_第5页
第5页 / 共12页
点击查看更多>>
资源描述

《感应电机矢量控制 江南大学》由会员分享,可在线阅读,更多相关《感应电机矢量控制 江南大学(12页珍藏版)》请在金锄头文库上搜索。

1、设计题目:感应电机矢量控制的仿真设计要求:1. 分析感应电机矢量控制原理,对系统各个组成模块进行详细介绍;2. 在Matlab/Simulink 环境下建立感应电机矢量控制系统的仿真模型;3. 在不同给定、负载下进行仿真分析;4. 按规范撰写课程设计报告。撰写规范:1. 报告由封面、设计要求、正文和设计心得体会组成;2. 封面包括:课程设计名称、学院、班级、姓名、学号、日期、成绩;3. 正文报告格式请按照江南大学学报的要求。摘要:本文从感应电动机的数学模型着手介绍一种基于matlab/simulink的感应电动机仿真模型,使用时只需要输入不同的电机参数即可。在此基础上设计一个典型的直接矢量控制

2、系统,然后利用Simulink仿真软件对该控制系统运行情况进行仿真研究。关键字:MATLAB/SIMULINK;感应电机;矢量控制;仿真引言:异步电动机的动态数学模型是一个高阶,非线性,强耦合的多变量系统,虽然通过坐标变换可以使之降阶并化简,但并没有改变其非线性多变量的本质。因此,需要异步电动机调速系统具有高动态性能,必须面向这样一个动态模型。目前电机调速行业内有几种控制方案已经获得了成功的应用。动态模型按转子磁链定向的直接矢量控制系统就应用的很广泛!本文利用matlab/simulink仿真软件建立一个通用的仿真模型。然后用到直接矢量控制系统中去,对该系统进行仿真研究。一、各部分原理介绍1、

3、矢量控制系统原理既然异步电动机经过坐标变换可以等效成直流电动机,那么,模仿直流电动机的控制策略,得到直流电动机的控制量,再经过相应的坐标反变换,就能够控制异步电动机了。由于进行坐标变换的是电流(代表磁动势)的空间矢量,所以这样通过坐标变换实现的控制系统就称为矢量控制系统,简称VC系统。VC系统的原理结构如图2.1所示。图中的给定和反馈信号经过类似于直流调速系统所用的控制器,产生励磁电流的给定信号和电枢电流的给定信号,经过反旋转变换一得到和,再经过23变换得到、和。把这三个电流控制信号和由控制器得到的频率信号加到电流控制的变频器上,所输出的是异步电动机调速所需的三相变频电流。图2.1矢量控制系统

4、原理结构图在设计VC系统时,如果忽略变频器可能产生的滞后,并认为在控制器后面的反旋转变换器与电机内部的旋转变换环节VR相抵消,23变换器与电机内部的32变换环节相抵消,则图2.1中虚线框内的部分可以删去,剩下的就是直流调速系统了。可以想象,这样的矢量控制交流变压变频调速系统在静、动态性能上完全能够与直流调速系统相媲美。2、坐标变换的基本思路坐标变换的目的是将交流电动机的物理模型变换成类似直流电动机的模式,这样变换后,分析和控制交流电动机就可以大大简化。以产生同样的旋转磁动势为准则,在三相坐标系上的定子交流电流、,通过三相两相变换可以等效成两相静止坐标系上的交流电流和,再通过同步旋转变换,可以等

5、效成同步旋转坐标系上的直流电流和。如果观察者站到铁心上与坐标系一起旋转,他所看到的就好像是一台直流电动机。把上述等效关系用结构图的形式画出来,得到图2.l。从整体上看,输人为A,B,C三相电压,输出为转速,是一台异步电动机。从结构图内部看,经过32变换和按转子磁链定向的同步旋转变换,便得到一台由和输入,由输出的直流电动机。图2.2 异步电动机的坐标变换结构图3、坐标变换(1)三相两相坐标系变换(3/2变换) 图2.3为交流电机坐标系等效变换图。图中的A,B,C坐标轴分别代表电机参量分解的三相坐标系。而,则表示电机参量分解的静止两相坐标系。每一个坐标轴上的磁动势分量,可以通过在此坐标轴的电流i与

6、电机在此轴上的匝数N的乘积来表示。图2.3 坐标变换图假定A轴与a轴重合,三相坐标系上电机每相绕组有效匝数是,两相坐标系上电机绕组每相有效匝数为,在三相定子绕组中,通入正弦电流,则磁动势波形为正弦分布,因此,当三相总安匝数与两相总安匝数相等时,两相绕组瞬时安匝数在轴上投影应该相等。因此有式(2-1)和(2-2)。 (2-1) (2-2) 为了保持坐标变换前后的总功率,即应该保持变换前后有效绕组在气隙中的磁通相等 (2-3) 设三相绕组磁通公式: (2-4) 两相绕组磁通公式: (2-5) 上面两式K为固定比例参数,通过增入一个分量,我们可以写成矩阵形式为: (2-6) 将上两式写成矩阵形式并对

7、其规格化得到下面方程: (2-7) 从上式解得,三相到两相的匝数比应该为: (2-8) 因此,可以得到下面的矩阵形式: (2-9) 当电机使用星型接法时,有等式: (2-10) 则上面的变换矩阵可以写成下面的形式: (2-11) 同时,我们可以得到从两相到三相的变换矩阵,即为上面矩阵的逆变换: (2-12) 从原理上分析,上面的变换公式具有普遍性,同样可以应用于电压或者其他参量的变换中。从三相坐标到两相坐标的变换,通常只是简化电机模型的第一步,为了满足不同参考坐标系的各个参量分量的分析,需要找出不同参考运动坐标系的变换方程,下面推导从静止坐标系到运动坐标系的变换公式。(2)旋转变换(2s/2r

8、变换) q d 图2.4 旋转坐标变换图 下面通过相电流的等效变换,来说明旋转变换原理。如图2.4表示了从两相静止坐标系到两相旋转坐标系dq的电机相电流变换。此变换简称2s/2r变换。其中s表示静止,r表示旋转。从图中可以看出,假定固定坐标系的两相垂直电流与旋转坐标系的两相垂直的电流产生等效的、以同步转速旋转的合成磁动势,由于变换坐标变换前后各个绕组的匝数相等,故能量恒定,因此变换前后的系数相等。当合成磁动势在空间旋转,分量的大小保持不变,相当于在dq坐标轴上绕组的电流是直流。轴与d轴夹角随时间而变化。从图上可以得到: (2-13) 式中为2s/2r变换矩阵。 同理,经过坐标逆变换,也可以得到

9、从两相静止坐标系变换到旋转坐标系的变换矩阵: (2-14) 从上面电机的坐标系变换中,可以看到,经过3/2变换以及旋转变换,可以将子三相绕组电流等效在空间任意角度坐标系上。同理,对于任何电参数,都可以通过等效变换,将其变换在空间任意角度的坐标系上。如果将上面推导的电机数学模型中的电压矩阵经过旋转变换,同样可以将电机各个参量等效在空间任意位置的坐标系中,因此当选择与转子磁场固联的坐标系时,可以大大简化电机数学模型,便于电机解耦控制。在当前电机控制系统中应用广泛的广义旋转变换电压变换矩阵为: (2-15)上面的变换矩阵的系数是经过规格化的。在不同控制方式中可将其等效在电机转子上,还可等效在旋转磁场

10、上,也可以等效于一个变量上,如电流,电压,或者磁通等。不同的坐标等效导致了不同的坐标系和不同的控制方法。当角度为零时,就是上述的3/2变换,即为a,,0坐标下的模型,当坐标于转子轴上时,对异步电机来说:。4、异步电动机在不同坐标系下的数学模型(1)异步电动机在坐标系上的数学模型 对于异步电机定子侧的电磁量我们用下角标以s,对于转子侧的电磁量用下角标r,气隙电磁量则用下角标m,电压矩阵方程为: (2-16) 磁链方程为: (2-17) 电磁转矩为: (2-18)(2)异步电动机在两相旋转坐标上的数学模型 因为定义方向为d轴,所以,=0通过变换,异步电机在d-q坐标系下数学模型,电压方程为: (2

11、-19) 磁链方程为: (2-20)电磁转矩为: (2-21)(3)转子磁链计算 按转子磁链定向的矢量控制系统的关键是的准确定向,也就是说需要获得转子磁链矢量的空间位置。根据转子磁链的实际值进行控制的方法,称作直接定向。 转子磁链的直接检测比较困难,现在实用的系统中多采用按模型计算的方法,即利用容易测得的电压、电流或转速等信号,借助于转子磁链模型,实时计算磁链的幅值与空间位置。转子磁链模型可以从电动机数学模型中推导出来,也可以利用专题观测器或状态估计理论得到闭环的观测模型。在计算模型中,由于主要实测信号的不同,又分为电流模型和电压模型两种。1) 在坐标系上计算转子磁链的电流模型 由实测的三相定子电流通过3/2变换得到静止两相正交坐标系上的电流,在利用坐标系中的数学模型式计算转子磁链在轴上的分量 (2-22) 也可表述为: (2-23) 然后,采用直角坐标-极坐标变换,就可得到转子磁链矢量的幅值和空间位置,考虑到矢量变换中实际使用的是的正弦和余弦函数,故可以采用变换式 (2-24) (2-25) (2-26) 在坐标系中计算转子磁链时,即系统达到稳态,由于电压、电流和磁链均为正弦量,计算量大,程序幅值,对计算步长敏感。 2) 计算转子磁链的电压模型根据电压方程中感应电动势等于磁链变化率的关系,

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号