多效蒸发设计(以NaOH为例)

上传人:012****78 文档编号:141581717 上传时间:2020-08-10 格式:DOC 页数:24 大小:598KB
返回 下载 相关 举报
多效蒸发设计(以NaOH为例)_第1页
第1页 / 共24页
多效蒸发设计(以NaOH为例)_第2页
第2页 / 共24页
多效蒸发设计(以NaOH为例)_第3页
第3页 / 共24页
多效蒸发设计(以NaOH为例)_第4页
第4页 / 共24页
多效蒸发设计(以NaOH为例)_第5页
第5页 / 共24页
点击查看更多>>
资源描述

《多效蒸发设计(以NaOH为例)》由会员分享,可在线阅读,更多相关《多效蒸发设计(以NaOH为例)(24页珍藏版)》请在金锄头文库上搜索。

1、化 工 原 理 课 程 设 计NaOH 蒸 发 系 统 设 计目 录第一章 前言11 概述第二章 蒸发工艺设计计算21蒸浓液浓度计算22溶液沸点和有效温度差的确定 221 各效由于溶液的蒸汽压下降所引起的温度差损失/ 222 各效由于溶液静压强所因引起的温度差损失223 由经验不计流体阻力产生压降所引起的温度差损失23 加热蒸汽消耗量和各效蒸发水量的计算24 蒸发器的传热面积和有效温度差在各效中的分布以及传热系数K的确定25 温差的重新分配与试差计算 251重新分配各效的有效温度差,252重复上述计算步骤 26计算结果列表第三章 NaOH溶液的多效蒸发优化程序部分31 具体的拉格朗日乘子法求解

2、过程32 程序内部变量说明33 程序内容:34 程序优化计算结果35 优化前后费用比较 第四章 蒸发器工艺尺寸计算41 加热管的选择和管数的初步估计 411 加热管的选择和管数的初步估计412 循环管的选择413 加热室直径及加热管数目的确定414 分离室直径与高度的确定42 接管尺寸的确定421 溶液进出422 加热蒸气进口与二次蒸汽出口 423 冷凝水出口 第五章、蒸发装置的辅助设备51 气液分离器52 蒸汽冷凝器 521 冷却水量 522 计算冷凝器的直径 523 淋水板的设计53泵选型计算54预热器的选型第六章 主要设备强度计算及校核61蒸发分离室厚度设计62加热室厚度校核第七章 小结

3、与参考文献:符号说明希腊字母:c比热容,KJ/(Kg.h)对流传热系数,/m2.d管径,m 温度差损失,D直径,m误差,D加热蒸汽消耗量,Kg/h 热损失系数,f校正系数, 阻力系数,F进料量,Kg/h 导热系数,/m2.g重力加速度,9.81m/s2 粘度,Pa.sh高度,m 密度,Kg/m3H高度,mk 杜林线斜率 K总传热系数,W/m2. 加和L液面高度,m 系数L加热管长度,m L淋水板间距,m 下标:n效数1,2,3效数的序号n第n效0进料的p压强,Pai内侧q热通量,W/m2 m平均Q传热速率,W o外侧r汽化潜热,KJ/Kg p压强 R热阻,m2./Ws污垢的S传热面积,m2 w

4、水的t管心距,m w壁面的T蒸汽温度,u流速,m/sU蒸发强度,Kg/m2.h上标:V体积流量,m3/h:二次蒸汽的W蒸发量,Kg/h :因溶液蒸汽压而引起的W质量流量,Kg/h :因液柱静压强而引起的x溶剂的百分质量,:因流体阻力损失而引起的第一章 前言11概述1蒸发及蒸发流程蒸发是采用加热的方法,使含有不挥发性杂质(如盐类)的溶液沸腾,除去其中被汽化单位部分杂质,使溶液得以浓缩的单元操作过程。蒸发操作广泛用于浓缩各种不挥发性物质的水溶液,是化工、医药、食品等工业中较为常见的单元操作。化工生产中蒸发主要用于以下几种目的:1获得浓缩的溶液产品;2、将溶液蒸发增浓后,冷却结晶,用以获得固体产品,

5、如烧碱、抗生素、糖等产品;3、脱除杂质,获得纯净的溶剂或半成品,如海水淡化。进行蒸发操作的设备叫做蒸发器。蒸发器内要有足够的加热面积,使溶液受热沸腾。溶液在蒸发器内因各处密度的差异而形成某种循环流动,被浓缩到规定浓度后排出蒸发器外。蒸发器内备有足够的分离空间,以除去汽化的蒸汽夹带的雾沫和液滴,或装有适当形式的除沫器以除去液沫,排出的蒸汽如不再利用,应将其在冷凝器中加以冷凝。蒸发过程中经常采用饱和蒸汽间壁加热的方法,通常把作热源用的蒸汽称做一次蒸汽,从溶液蒸发出来的蒸汽叫做而次蒸汽。2蒸发操作的分类按操作的方式可以分为间歇式和连续式,工业上大多数蒸发过程为连续稳定操作的过程。按二次蒸汽的利用情况

6、可以分为单效蒸发和多效蒸发,若产生的二次蒸汽不加利用,直接经冷凝器冷凝后排出,这种操作称为单效蒸发。若把二次蒸汽引至另一操作压力较低的蒸发器作为加热蒸气,并把若干个蒸发器串联组合使用,这种操作称为多效蒸发。多效蒸发中,二次蒸汽的潜热得到了较为充分的利用,提高了加热蒸汽的利用率。按操作压力可以分为常压、加压或减压蒸发。真空蒸发有许多优点:(1)、在低压下操作,溶液沸点较低,有利于提高蒸发的传热温度差,减小蒸发器的传热面积;(2)、可以利用低压蒸气作为加热剂;(3)、有利于对热敏性物料的蒸发;(4)、操作温度低,热损失较小。在加压蒸发中,所得到的二次蒸气温度较高,可作为下一效的加热蒸气加以利用。因

7、此,单效蒸发多为真空蒸发;多效蒸发的前效为加压或常压操作,而后效则在真空下操作。3蒸发操作的特点从上述对蒸发过程的简单介绍可知,常见的蒸发时间壁两侧分别为蒸气冷凝和液体沸腾的传热过程,蒸发器也就是一种换热器。但和一般的传热过程相比,蒸发操作又有如下特点:(1) 沸点升高 蒸发的溶液中含有不挥发性的溶质,在港台压力下溶液的蒸气压较同温度下纯溶剂的蒸气压低,使溶液的沸点高于纯溶液的沸点,这种现象称为溶液沸点的升高。在加热蒸气温度一定的情况下,蒸发溶液时的传热温差必定小于加热唇溶剂的纯热温差,而且溶液的浓度越高,这种影响也越显著。(2) 物料的工艺特性 蒸发的溶液本身具有某些特性,例如有些物料在浓缩

8、时可能析出晶体,或易于结垢;有些则具有较大的黏度或较强的腐蚀性等。如何根据物料的特性和工艺要求,选择适宜的蒸发流程和设备是蒸发操作彼此必须要考虑的问题。(3) 节约能源 蒸发时汽化的溶剂量较大,需要消耗较大的加热蒸气。如何充分利用热量,提高加热蒸气的利用率是蒸发操作要考虑的另一个问题。4蒸发设备 蒸发设备的作用是使进入蒸发器的原料液被加热,部分气化,得到浓缩的完成液,同时需要排出二次蒸气,并使之与所夹带的液滴和雾沫相分离。 蒸发的主体设备是蒸发器,它主要由加热室和蒸发室组成。蒸发的辅助设备包括:使液沫进一步分离的除沫器,和使二次蒸气全部冷凝的冷凝器。减压操作时还需真空装置。兹分述如下: 由于生

9、产要求的不同,蒸发设备有多种不同的结构型式。对常用的间壁传热式蒸发器,按溶液在蒸发器中的运动情况,大致可分为以下两大类:(1)循环型蒸发器 特点:溶液在蒸发器中做循环流动,蒸发器内溶液浓度基本相同,接近于完成液的浓度。操作稳定。此类蒸发器主要有a.中央循环管式蒸发器,b.悬筐式蒸发器 c.外热式蒸发器, d.列文式蒸发器 e.强制循环蒸发器。其中,前四种为自然循环蒸发器。(2)单程型蒸发器 特点:溶液以液膜的形式一次通过加热室,不进行循环。优点:溶液停留时间短,故特别适用于热敏性物料的蒸发;温度差损失较小,表面传热系数较大。缺点:设计或操作不当时不易成膜,热流量将明显下降;不适用于易结晶、结垢

10、物料的蒸发。此类蒸发器主要有a.升膜式蒸发器,b.降膜式蒸发器,c.刮板式蒸发器本次设计采用的是中央循环管式蒸发器 :结构和原理:其下部的加热室由垂直管束组成,中间由一根直径较大的中央循环管。当管内液体被加热沸腾时,中央循环管内气液混合物的平均密度较大;而其余加热管内气液混合物的平均密度较小。在密度差的作用下,溶液由中央循环管下降,而由加热管上升,做自然循环流动。溶液的循环流动提高了沸腾表面传热系数,强化了蒸发过程。这种蒸发器结构紧凑,制造方便,传热较好,操作可靠等优点,应用十分广泛,有标准蒸发器之称。为使溶液有良好的循环,中央循环管的截面积,一般为其余加热管总截面积的40%100%;加热管的

11、高度一般为12m;加热管径多为2575mm之间。但实际上,由于结构上的限制,其循环速度一般在0.40.5m/s以下;蒸发器内溶液浓度始终接近完成液浓度;清洗和维修也不够方便。第二章 蒸发工艺设计计算21蒸浓液浓度计算多效蒸发的工艺计算的主要依据是物料衡算和、热量衡算及传热速率方程。计算的主要项目有:加热蒸气(生蒸气)的消耗量、各效溶剂蒸发量以及各效的传热面积。计算的已知参数有:料液的流量、温度和浓度,最终完成液的浓度,加热蒸气的压强和冷凝器中的压强等。蒸发器的设计计算步骤多效蒸发的计算一般采用试算法。(1) 根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸气压强及冷凝器的压强),蒸发器的

12、形式、流程和效数。(2) 根据生产经验数据,初步估计各效蒸发量和各效完成液的浓度。(3) 根据经验假设蒸气通过各效的压强降相等,估算个效溶液沸点和有效总温差。(4) 根据蒸发器的焓衡算,求各效的蒸发量和传热量。(5) 根据传热速率方程计算各效的传热面积。若求得的各效传热面积不相等,则应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5),直到所求得各效传热面积相等(或满足预先给出的精度要求)为止。F=4557.3kg/h 总蒸发量:W=F(1- )=4557.3(1-)=3038.2kg/h 并流加料蒸发中无额外蒸汽引出,可设:W2:W3=1:1.1:1.2 而W=W1+W2+W3=3038.2kg/h 由以上三式可得:W1=920.7kg/h; W2=1012.7kg/h; W3=1104.8kg/h; X1=0.125; X2= =0.174;X3=0.322溶液沸点和有效温度差的确定设各效间的压强降相等,则总压强差为: =P1-PK/=501.3-30.4=470.9KPa P=式中 P -各效加热蒸汽压强与二次蒸气压强之差KPa, -第一次加热蒸气的压强KPa-末效冷凝器中的二次蒸气的压强KPa 各效间的压强差可求得各效蒸发室的压强 即P1/=P1-Pi=501.3-470.9/3=344.3KPa

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 毕业论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号