《2020年重庆市中考数学试卷(B卷)(教师版含解析)》由会员分享,可在线阅读,更多相关《2020年重庆市中考数学试卷(B卷)(教师版含解析)(25页珍藏版)》请在金锄头文库上搜索。
1、2020年重庆市中考数学试卷(B卷)参考答案与试题解析一选择题(共12小题)15的倒数是()A5BC5D【分析】根据倒数的定义,可得答案【解答】解:5得倒数是,故选:B2围成下列立体图形的各个面中,每个面都是平的是()A长方体B圆柱体C球体D圆锥体【分析】根据平面与曲面的概念判断即可【解答】解:A、六个面都是平面,故本选项正确;B、侧面不是平面,故本选项错误;C、球面不是平面,故本选项错误;D、侧面不是平面,故本选项错误;故选:A3计算aa2结果正确的是()AaBa2Ca3Da4【分析】根据同底数幂的乘法法则计算即可【解答】解:aa2a1+2a3故选:C4如图,AB是O的切线,A为切点,连接O
2、A,OB若B35,则AOB的度数为()A65B55C45D35【分析】根据切线的性质得到OAB90,根据直角三角形的两锐角互余计算即可【解答】解:AB是O的切线,OAAB,OAB90,AOB90B55,故选:B5已知a+b4,则代数式1+的值为()A3B1C0D1【分析】将a+b的值代入原式1+(a+b)计算可得【解答】解:当a+b4时,原式1+(a+b)1+41+23,故选:A6如图,ABC与DEF位似,点O为位似中心已知OA:OD1:2,则ABC与DEF的面积比为()A1:2B1:3C1:4D1:5【分析】根据位似图形的概念求出ABC与DEF的相似比,根据相似三角形的性质计算即可【解答】解
3、:ABC与DEF是位似图形,OA:OD1:2,ABC与DEF的位似比是1:2ABC与DEF的相似比为1:2,ABC与DEF的面积比为1:4,故选:C7小明准备用40元钱购买作业本和签字笔已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为()A5B4C3D2【分析】设还可以买x个作业本,根据总价单价数量结合总价不超过40元,即可得出关系x的一元一次不等式,解之取其中的最大整数值即可得出结论【解答】解:设还可以买x个作业本,依题意,得:2.27+6x40,解得:x4又x为正整数,x的最大值为4故选:B8下列图形都是由同样大小的实心圆点按一定规律组成的,其中第个
4、图形一共有5个实心圆点,第个图形一共有8个实心圆点,第个图形一共有11个实心圆点,按此规律排列下去,第个图形中实心圆点的个数为()A18B19C20D21【分析】根据已知图形中实心圆点的个数得出规律:第n个图形中实心圆点的个数为2n+n+2,据此求解可得【解答】解:第个图形中实心圆点的个数521+3,第个图形中实心圆点的个数822+4,第个图形中实心圆点的个数1123+5,第个图形中实心圆点的个数为26+820,故选:C9如图,垂直于水平面的5G信号塔AB建在垂直于水平面的悬崖边B点处,某测量员从山脚C点出发沿水平方向前行78米到D点(点A,B,C在同一直线上),再沿斜坡DE方向前行78米到E
5、点(点A,B,C,D,E在同一平面内),在点E处测得5G信号塔顶端A的仰角为43,悬崖BC的高为144.5米,斜坡DE的坡度(或坡比)i1:2.4,则信号塔AB的高度约为()(参考数据:sin430.68,cos430.73,tan430.93)A23米B24米C24.5米D25米【分析】过点E作EFDC交DC的延长线于点F,过点E作EMAC于点M,根据斜坡DE的坡度(或坡比)i1:2.4可设EFx,则DF2.4x,利用勾股定理求出x的值,进而可得出EF与DF的长,故可得出CF的长由矩形的判定定理得出四边形EFCM是矩形,故可得出EMFC,CMEF,再由锐角三角函数的定义求出AM的长,进而可得
6、出答案【解答】解:过点E作EFDC交DC的延长线于点F,过点E作EMAC于点M,斜坡DE的坡度(或坡比)i1:2.4,BECD78米,设EFx,则DF2.4x在RtDEF中,EF2+DF2DE2,即x2+(2.4x)2782,解得x30,EF30米,DF72米,CFDF+DC72+78150米EMAC,ACCD,EFCD,四边形EFCM是矩形,EMCF150米,CMEF30米在RtAEM中,AEM43,AMEMtan431500.93139.5米,ACAM+CM139.5+30169.5米ABACBC169.5144.525米故选:D10若关于x的一元一次不等式组的解集为x5,且关于y的分式方
7、程+1有非负整数解,则符合条件的所有整数a的和为()A1B2C3D0【分析】不等式组整理后,根据已知解集确定出a的范围,分式方程去分母转化为正整数方程,由分式方程有非负整数解,确定出a的值,求出之和即可【解答】解:不等式组整理得:,由解集为x5,得到2+a5,即a3,分式方程去分母得:yay+2,即2y2a,解得:y+1,由y为非负整数,且y2,得到a0,2,之和为2,故选:B11如图,在ABC中,AC2,ABC45,BAC15,将ACB沿直线AC翻折至ABC所在的平面内,得ACD过点A作AE,使DAEDAC,与CD的延长线交于点E,连接BE,则线段BE的长为()AB3C2D4【分析】延长BC
8、交AE于H,由折叠的性质DACBAC15,ADCABC45,ACBACD120,由外角的性质可求AEDEAC,可得ACEC,由“SAS”可证ABCEBC,可得ABBE,ABCEBC45,利用等腰直角三角形的性质和直角三角形的性质可求解【解答】解:如图,延长BC交AE于H,ABC45,BAC15,ACB120,将ACB沿直线AC翻折,DACBAC15,ADCABC45,ACBACD120,DAEDAC,DAEDAC15,CAE30,ADCDAE+AED,AED451530,AEDEAC,ACEC,又BCE360ACBACE120ACB,BCBC,ABCEBC(SAS),ABBE,ABCEBC45
9、,ABE90,ABBE,ABCEBC,AHEH,BHAE,CAE30,CHAC,AHCH,AE2,ABBE,ABE90,BE2,故选:C12如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(2,3),AD5,若反比例函数y(k0,x0)的图象经过点B,则k的值为()AB8C10D【分析】过D作DEx轴于E,过B作BFx轴,BHy轴,得到BHC90,根据勾股定理得到AE4,根据矩形的性质得到ADBC,根据全等三角形的性质得到BHAE4,求得AF2,根据相似三角形的性质即可得到结论【解答】解:过D作DEx轴于E,过B作BFx轴,BHy轴,BHC90,点D(2,3)
10、,AD5,DE3,AE4,四边形ABCD是矩形,ADBC,BCDADC90,DCP+BCHBCH+CBH90,CBHDCH,DCG+CPDAPO+DAE90,CPDAPO,DCPDAE,CBHDAE,AEDBHC90,ADEBCH(AAS),BHAE4,OE2,OA2,AF2,APO+PAOBAF+PAO90,APOBAF,APOBAF,BF,B(4,),k,故选:D二填空题(共6小题)13计算:()13【分析】先计算负整数指数幂和算术平方根,再计算加减可得【解答】解:原式523,故答案为:314经过多年的精准扶贫,截至2019年底,我国的农村贫困人口减少了约94000000人请把数94000
11、000用科学记数法表示为9.4107【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【解答】解:940000009.4107,故答案为:9.410715盒子里有3张形状、大小、质地完全相同的卡片,上面分别标着数字1,2,3,从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为奇数的概率是【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得【解答】解:列表如下123134235345
12、由表可知,共有6种等可能结果,其中两次抽出的卡片上的数字之和为奇数的有4种结果,所以两次抽出的卡片上的数字之和为奇数的概率为,故答案为:16如图,在菱形ABCD中,对角线AC,BD交于点O,ABC120,AB2,以点O为圆心,OB长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为3(结果保留)【分析】由菱形的性质可得ACBD,BODO,OAOC,ABAD,DAB60,可证BEO,DFO是等边三角形,由等边三角形的性质可求EOF60,由扇形的面积公式和面积和差关系可求解【解答】解:如图,设连接以点O为圆心,OB长为半径画弧,分别与AB,AD相交于E,F,连接EO,FO,四边形ABCD是菱形,ABC120,ACBD,BODO,OAOC,ABAD,DAB60,ABD是等边三角形,ABBD2,ABDADB60,BODO,以点O为圆心,OB长为半径画弧,BOOEODOF,BEO,DFO是等边三角形,DOFBOE60,EOF60,阴影部分的面积2(SABDSDFOSBEOS扇形OEF)2(1233)3,故答案为:317周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟乙骑行25分