第2章 整流电路D知识讲解

上传人:yuzo****123 文档编号:141435991 上传时间:2020-08-08 格式:PPT 页数:141 大小:7.82MB
返回 下载 相关 举报
第2章 整流电路D知识讲解_第1页
第1页 / 共141页
第2章 整流电路D知识讲解_第2页
第2页 / 共141页
第2章 整流电路D知识讲解_第3页
第3页 / 共141页
第2章 整流电路D知识讲解_第4页
第4页 / 共141页
第2章 整流电路D知识讲解_第5页
第5页 / 共141页
点击查看更多>>
资源描述

《第2章 整流电路D知识讲解》由会员分享,可在线阅读,更多相关《第2章 整流电路D知识讲解(141页珍藏版)》请在金锄头文库上搜索。

1、2-1,第2章 整流电路,2.1 单相可控整流电路 2.2 三相可控整流电路 2.3 变压器漏感对整流电路的影响 2.4 电容滤波的不可控整流电路 2.5 整流电路的谐波和功率因数 2.6 大功率可控整流电路 2.7 整流电路的有源逆变工作状态 2.8 晶闸管直流电动机系统 2.9 相控电路的驱动控制 本章小结,2-2,第2章 整流电路引言,整流电路的分类: 按组成的器件可分为不可控、半控、全控三种。 按电路结构可分为桥式电路和零式电路。 按交流输入相数分为单相电路和多相电路。 按变压器二次侧电流的方向是单向或双向,又分为单拍电路和双拍电路。,整流电路: 出现最早的电力电子电路,将交流电变为直

2、流电。,2-3,2.1 单相可控整流电路,2.1.1 单相半波可控整流电路 2.1.2 单相桥式全控整流电路 2.1.3 单相全波可控整流电路 2.1.4 单相桥式半控整流电路,2-5,2.1.1 单相半波可控整流电路,VT的a 移相范围为180 通过控制触发脉冲的相位来控制直流输出电压大小的方式称为相位控制方式,简称相控方式。,首先,引入两个重要的基本概念: 触发延迟角:从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度,用a表示,也称触发角或控制角。 导通角:晶闸管在一个电源周期中处于通态的电角度,用表示 。,基本数量关系,直流输出电压平均值为,(2-1),2-6,2.1.1 单相半波

3、可控整流电路,2) 带阻感负载的工作情况,图2-2 带阻感负载的 单相半波电路及其波形,阻感负载的特点:电感对电流变化有抗拒作用,使得流过电感的电流不发生突变。,讨论负载阻抗角j、触发角a、晶闸管导通角的关系。,2-7,2.1.1 单相半波可控整流电路,对单相半波电路的分析可基于上述方法进行: 当VT处于断态时,相当于电路在VT处断开,id=0。 当VT处于通态时,相当于VT短路。,图2-3 单相半波可控整流 电路的分段线性等效电路 a)VT处于关断状态 b)VT处于导通状态,电力电子电路的一种基本分析方法 通过器件的理想化,将电路简化为分段线性电路。 器件的每种状态对应于一种线性电路拓扑。,

4、2-8,2.1.1 单相半波可控整流电路,当VT处于通态时,如下方程成立:,b) VT处于导通状态,(2-2),(2-4),初始条件:t= a ,id=0。求解式(2-2)并将初始条件代入可得,当t=+a 时,id=0,代入式(2-3)并整理得,2-9,2.1.1 单相半波可控整流电路,续流二极管,图2-4 单相半波带阻感负载 有续流二极管的电路及波形,当u2过零变负时,VDR导通,ud为零,VT承受反压关断。 L储存的能量保证了电流id在L-R-VDR回路中流通,此过程通常称为续流。,数量关系(id近似恒为Id),(2-5),(2-6),(2-7),(2-8),2-10,2.1.1 单相半波

5、可控整流电路,VT的a 移相范围为180。 简单,但输出脉动大,变压器二次侧电流中含直流分量,造成变压器铁芯直流磁化。 实际上很少应用此种电路。 分析该电路的主要目的建立起整流电路的基本概念。,单相半波可控整流电路的特点,2-11,2.1.2 单相桥式全控整流电路,1) 带电阻负载的工作情况,a),工作原理及波形分析 VT1和VT4组成一对桥臂,在u2正半周承受电压u2,得到触发脉冲即导通,当u2过零时关断。 VT2和VT3组成另一对桥臂,在u2正半周承受电压-u2,得到触发脉冲即导通,当u2过零时关断。,电路结构,单相桥式全控整流电路(Single Phase Bridge Contrell

6、ed Rectifier),2-12,2.1.2 单相桥式全控整流电路,数量关系,(2-9),a 角的移相范围为180。,向负载输出的平均电流值为:,流过晶闸管的电流平均值只有输出直流平均值的一半,即:,(2-10),(2-11),2-13,2.1.2 单相桥式全控整流电路,流过晶闸管的电流有效值:,变压器二次测电流有效值I2与输出直流电流I有效值相等:,由式(2-12)和式(2-13)得:,不考虑变压器的损耗时,要求变压器的容量 S=U2I2。,(2-12),(2-13),(2-14),2-14,2.1.2 单相桥式全控整流电路,2)带阻感负载的工作情况,u,图2-6 单相全控桥带 阻感负载

7、时的电路及波形,假设电路已工作于稳态,id的平均值不变。 假设负载电感很大,负载电流id连续且波形近似为一水平线。 u2过零变负时,晶闸管VT1和VT4并不关断。 至t=+a 时刻,晶闸管VT1和VT4关断,VT2和VT3两管导通。 VT2和VT3导通后,VT1和VT4承受反压关断,流过VT1和VT4的电流迅速转移到VT2和VT3上,此过程称换相,亦称换流。,2-15,2.1.2 单相桥式全控整流电路,数量关系,(2-15),晶闸管移相范围为90。,晶闸管导通角与a无关,均为180。电流的平均值和有效值:,变压器二次侧电流i2的波形为正负各180的矩形波,其相位由a角决定,有效值I2=Id。,

8、晶闸管承受的最大正反向电压均为 。,2-16,2.1.2 单相桥式全控整流电路,3) 带反电动势负载时的工作情况,图2-7 单相桥式全控整流电路接反电动势电阻负载时的电路及波形,在|u2|E时,才有晶闸管承 受正电压,有导通的可能。,在a 角相同时,整流输出电压比电阻负载时大。,导通之后, ud=u2, , 直至|u2|=E,id即降至0使得 晶闸管关断,此后ud=E 。,2-17,2.1.2 单相桥式全控整流电路,当 d时,触发脉冲到来时,晶闸管承受负电压,不可能导通。,图2-7b 单相桥式全控整流电路接反电动势电阻负载时的波形,电流断续,触发脉冲有足够的宽度,保证当wt=d时刻有晶闸管开始

9、承受正电压时,触发脉冲仍然存在。这样,相当于触发角被推迟为d。,如图2-7b所示id波形所示:,电流连续,2-18,2.1.2 单相桥式全控整流电路,负载为直流电动机时,如果出现电流断续,则电动机 的机械特性将很软 。,为了克服此缺点,一般在主电路中直流输出侧串联一个平波电抗器。,这时整流电压ud的波形和负载电流id的波形与阻感负载电流连续时的波形相同,ud的计算公式也一样。 为保证电流连续所需的电感量L可由下式求出:,(2-17),2-19,2.1.3 单相全波可控整流电路,单相全波可控整流电路(Single Phase Full Wave Controlled Rectifier),又称单

10、相双半波可控整流电路。,单相全波与单相全控桥从直流输出端或从交流输入端看均是基本一致的。 变压器不存在直流磁化的问题。,图2-9 单相全波可控整流电路及波形,2-20,2.1.3 单相全波可控整流电路,单相全波与单相全控桥的区别:,单相全波中变压器结构较复杂,材料的消耗多。 单相全波只用2个晶闸管,比单相全控桥少2个,相应地,门极驱动电路也少2个;但是晶闸管承受的最大电压是单相全控桥的2倍。 单相全波导电回路只含1个晶闸管,比单相桥少1个,因而管压降也少1个。,从上述后两点考虑,单相全波电路有利于在低输出电压的场合应用。,2-21,2.1.4 单相桥式半控整流电路,电路结构 单相全控桥中,每个

11、导电回路中有2个晶闸管,1个晶闸管可以用二极管代替,从而简化整个电路。 如此即成为单相桥式半控整流电路(先不考虑VDR)。,u,d,图2-10 单相桥式半控整流电路,有续流二极管,阻感负载时的电路及波形,电阻负载 半控电路与全控电路在电阻负载时的工作情况相同。,2-22,2.1.4 单相桥式半控整流电路,单相半控桥带阻感负载的情况,图2-10 单相桥式半控整流电路,有续流二极管,阻感负载时的电路及波形,在u2正半周,u2经VT1和VD4向负载供电。 u2过零变负时,因电感作用电流不再流经变压器二次绕组,而是由VT1和VD2续流。 在u2负半周触发角a时刻触发VT3,VT3导通,u2经VT3和V

12、D2向负载供电。 u2过零变正时,VD4导通,VD2关断。VT3和VD4续流,ud又为零。,2-23,2.1.4 单相桥式半控整流电路,续流二极管的作用,避免可能发生的失控现象。 若无续流二极管,则当a 突然增大至180或触发脉冲丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使ud成为正弦半波,其平均值保持恒定,称为失控。 有续流二极管VDR时,续流过程由VDR完成,避免了失控的现象。 续流期间导电回路中只有一个管压降,有利于降低损耗。,2-24,2.1.4 单相桥式半控整流电路,单相桥式半控整流电路的另一种接法,相当于把图2-5a中的VT3和VT4换为二极管VD3和VD4,这

13、样可以省去续流二极管VDR,续流由VD3和VD4来实现。,图2-5 单相全控桥式 带电阻负载时的电路及波形,图2-11 单相桥式半控整流电路的另一接法,2-25,2.2 三相可控整流电路,2.2.1 三相半波可控整流电路 2.2.2 三相桥式全控整流电路,2-26,2.2 三相可控整流电路引言,交流测由三相电源供电。 负载容量较大,或要求直流电压脉动较小、容易滤波。 基本的是三相半波可控整流电路,三相桥式全控整流电路应用最广 。,2-27,2.2.1 三相半波可控整流电路,电路的特点: 变压器二次侧接成星形得到零线,而一次侧接成三角形避免3次谐波流入电网。 三个晶闸管分别接入a、b、c三相电源

14、,其阴极连接在一起共阴极接法 。,图2-12 三相半波可控整流电路共阴极接法电阻负载时的电路及a =0时的波形,1)电阻负载,自然换相点: 二极管换相时刻为自然换相点,是各相晶闸管能触发导通的最早时刻,将其作为计算各晶闸管触发角a的起点,即a =0。,a),动画演示,2-28,2.2.1 三相半波可控整流电路,a =0时的工作原理分析,变压器二次侧a相绕组和晶闸管VT1的电流波形,变压器二次绕组电流有直流分量。 晶闸管的电压波形,由3段组成。,图2-12 三相半波可控整流电路共阴极接法电阻负载时的电路及a =0时的波形,a=30的波形(图2-13) 特点:负载电流处于连续和断续之间的临界状态。

15、 a30的情况(图2-14 ) 特点:负载电流断续,晶闸管导通角小于120 。,b),c),d),e),f),u,2,u,a,u,b,u,c,a,=0,O,w,t,1,w,t,2,w,t,3,u,G,O,u,d,O,O,u,ab,u,ac,O,i,VT,1,u,VT,1,w,t,w,t,w,t,w,t,w,t,动画演示,2-29,2.2.1 三相半波可控整流电路,(2-18),当a=0时,Ud最大,为 。,(2-19),整流电压平均值的计算,a30时,负载电流连续,有:,a30时,负载电流断续,晶闸管导通角减小,此时有:,2-30,2.2.1 三相半波可控整流电路,Ud/U2随a变化的规律如图

16、2-15中的曲线1所示。,图2-15 三相半波可控整流电路Ud/U2随a变化的关系 1电阻负载 2电感负载 3电阻电感负载,2-31,2.2.1 三相半波可控整流电路,负载电流平均值为,晶闸管承受的最大反向电压,为变压器二次线电压峰值,即,晶闸管阳极与阴极间的最大正向电压等于变压器二次相电压的峰值,即,(2-20),(2-21),(2-22),2-32,2.2.1 三相半波可控整流电路,2)阻感负载,图2-16 三相半波可控整流电路,阻感负载时的电路及a =60时的波形,特点:阻感负载,L值很大,id波形基本平直。 a30时:整流电压波形与电阻负载时相同。 a30时(如a=60时的波形如图2-16所示)。 u2过零时,VT1不关断,直到VT2的脉冲到来,才换流,ud波形中出现负的部分。 id波形有一定的脉动,但为简化分析及定量计算,可将id近似为一条水平线。 阻感负载时的移相范围为90。,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 教学课件 > 高中课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号