14半导体器件-yu电子教案

上传人:yulij****0329 文档编号:141371872 上传时间:2020-08-07 格式:PPT 页数:56 大小:1.23MB
返回 下载 相关 举报
14半导体器件-yu电子教案_第1页
第1页 / 共56页
14半导体器件-yu电子教案_第2页
第2页 / 共56页
14半导体器件-yu电子教案_第3页
第3页 / 共56页
14半导体器件-yu电子教案_第4页
第4页 / 共56页
14半导体器件-yu电子教案_第5页
第5页 / 共56页
点击查看更多>>
资源描述

《14半导体器件-yu电子教案》由会员分享,可在线阅读,更多相关《14半导体器件-yu电子教案(56页珍藏版)》请在金锄头文库上搜索。

1、第14章 半导体器件,14.3 半导体二极管,14.4 稳压二极管,14.5 半导体三极管,14.2 PN结,14.1 半导体的导电特性,14.6 光电器件,本章要求: 1. 理解PN结的单向导电性,三极管的电流分配和 电流放大作用; 2. 了解二极管、稳压管和三极管的基本构造、工 作原理和特性曲线,理解主要参数的意义; 3. 会分析含有二极管的电路。,第14章 半导体器件,导体、半导体和绝缘体,导体:自然界中很容易导电的物质称为导体,金属一般都是导体。,绝缘体:有的物质几乎不导电,称为绝缘体,如橡皮、陶瓷、塑料和石英。,半导体:另有一类物质的导电特性处于导体和绝缘体之间,称为半导体,如锗、硅

2、、砷化镓和一些硫化物、氧化物等。,14.1 半导体的导电特性,完全纯净、具有晶体结构的半导体,一、本征半导体,最常用的半导体为硅(Si)和锗(Ge)。它们的共同特征是四价元素,每个原子最外层电子数为 4 。,Si,Ge,完全纯净的、具有晶体结构的半导体,称为本征半导体。,晶体中原子的排列方式,硅单晶中的共价健结构,共价键、价电子,价电子,价电子在获得一定能量(温度升高或受光照)后,即可挣脱原子核的束缚,成为自由电子(带负电),同时共价键中留下一个空位,称为空穴(带正电)。,本征半导体的导电机理,这一现象称为本征激发。,空穴,温度愈高,晶体中产生的自由电子便愈多。,自由电子,自由电子和空穴都称为

3、载流子。 自由电子和空穴成对地产生的同时,又不断复合。在一定温度下,载流子的产生和复合达到动态平衡,半导体中载流子便维持一定的数目。,本征半导体的导电机理,当半导体两端加上外电压时,在半导体中将出现两部分电流 (1)自由电子作定向运动 电子电流 (2)价电子递补空穴 空穴电流,注意: (1) 本征半导体中载流子数目极少, 其导电性能很差; (2) 温度愈高, 载流子的数目愈多,半导体的导电性能也就愈好。所以,温度对半导体器件性能影响很大。,在外电场的作用下,空穴吸引相邻原子的价电子来填补,而在该原子中出现一个空穴,其结果相当于空穴的运动(相当于正电荷的移动)。,二、 N型半导体和 P 型半导体

4、,掺杂后自由电子数目大量增加,自由电子导电成为这种半导体的主要导电方式,称为电子半导体或N型半导体。,掺入五价元素,多余电子,磷原子,在常温下即可变为自由电子,失去一个电子变为正离子,在本征半导体中掺入微量的杂质(某种元素),形成杂质半导体。,在N 型半导体中自由电子是多数载流子,空穴是少数载流子。,N型半导体和 P 型半导体,掺杂后空穴数目大量增加,空穴导电成为这种半导体的主要导电方式,称为空穴半导体或 P型半导体。,掺入三价元素,在 P 型半导体中空穴是多数载流子,自由电子是少数载流子。,硼原子,接受一个电子变为负离子,空穴,无论N型或P型半导体都是中性的,对外不显电性。,1. 在杂质半导

5、体中多子的数量与 (a. 掺杂浓度、b.温度)有关。,2. 在杂质半导体中少子的数量与 (a. 掺杂浓度、b.温度)有关。,3. 当温度升高时,少子的数量 (a. 减少、b. 不变、c. 增多)。,a,b,c,4. 在外加电压的作用下,P 型半导体中的电流 主要是 ,N 型半导体中的电流主要是 。 (a. 电子电流、b.空穴电流),b,a,P,N,空间电荷区,P区,N区,多数载流子将扩散形成耗尽层;,耗尽了载流子的交界处留下不可移动的离子形成空间电荷区;(内电场),一块晶片的两边分别为P型半导体和N型半导体。,内电场阻碍了多子的继续扩散。,一、 PN结的形成,14.2 PN结,载流子的运动有两

6、种形式:,扩散 由于载流子浓度梯度引起的载流子从高浓度区向低浓度区的运动。,漂移 载流子受电场作用沿电场力方向的运动。,耗尽层中载流子的扩散和漂移运动最后达到一种动态平衡,这样的耗尽层就是PN结。,PN结内电场的方向由N区指向P区。,一、 PN结的形成,多子的扩散运动,少子的漂移运动,浓度差,P 型半导体,N 型半导体,内电场越强,漂移运动越强,而漂移使空间电荷区变薄。,扩散的结果使空间电荷区变宽。,空间电荷区也称 PN 结,扩散和漂移这一对相反的运动最终达到动态平衡,空间电荷区的厚度固定不变。,形成空间电荷区,二、 PN结的单向导电性,1. PN 结加正向电压(正向偏置),PN 结变窄,P接

7、正、N接负,IF,内电场被削弱,多子的扩散加强,形成较大的扩散电流。,PN 结加正向电压时,PN结变窄,正向电流较大,正向电阻较小,PN结处于导通状态。,2. PN 结加反向电压(反向偏置),P接负、N接正,PN 结变宽,2. PN 结加反向电压(反向偏置),内电场被加强,少子的漂移加强,由于少子数量很少,形成很小的反向电流。,IR,P接负、N接正,温度越高少子的数目越多,反向电流将随温度增加。,PN 结加反向电压时,PN结变宽,反向电流较小,反向电阻较大,PN结处于截止状态。,14.3 半导体二极管,14.3.1 基本结构,(a) 点接触型,(b)面接触型,结面积小、结电容小、正向电流小。用

8、于检波和变频等高频电路。,结面积大、正向电流大、结电容大,用于工频大电流整流电路。,(c) 平面型 用于集成电路制作工艺中。PN结结面积可大可小,用于高频整流和开关电路中。,图 1 12 半导体二极管的结构和符号,14.3 半导体二极管,二极管的结构示意图,14.3.2 伏安特性,硅管0.5V锗管0.1V,反向击穿 电压U(BR),导通压降,外加电压大于死区电压二极管才能导通。,外加电压大于反向击穿电压二极管被击穿,失去单向导电性。,正向特性,反向特性,特点:非线性,硅0.60.8V锗0.20.3V,死区电压,反向电流 在一定电压 范围内保持 常数。,14.3.3 主要参数,1. 最大整流电流

9、 IOM,二极管长期使用时,允许流过二极管的最大正向平均电流。,2. 反向工作峰值电压URWM,是保证二极管不被击穿而给出的反向峰值电压,一般是二极管反向击穿电压UBR的一半或三分之二。二极管击穿后单向导电性被破坏,甚至过热而烧坏。,3. 反向峰值电流IRM,指二极管加最高反向工作电压时的反向电流。反向电流大,说明管子的单向导电性差,IRM受温度的影响,温度越高反向电流越大。硅管的反向电流较小,锗管的反向电流较大,为硅管的几十到几百倍。,二极管的单向导电性,1. 二极管加正向电压(正向偏置,阳极接正、阴极接负 )时, 二极管处于正向导通状态,二极管正向电阻较小,正向电流较大。,2. 二极管加反

10、向电压(反向偏置,阳极接负、阴极接正 )时, 二极管处于反向截止状态,二极管反向电阻较大,反向电流很小。,3.外加电压大于反向击穿电压二极管被击穿,失去单向导电性。,4.二极管的反向电流受温度的影响,温度愈高反向电流愈大。,二极管电路分析举例,定性分析:判断二极管的工作状态,导通截止,分析方法:将二极管断开,分析二极管两端电位 的高低或所加电压UD的正负。,若 V阳 V阴或 UD为正( 正向偏置 ),二极管导通 若 V阳 V阴或 UD为负( 反向偏置 ),二极管截止,若二极管是理想的,正向导通时正向管压降为零,反向截止时二极管相当于断开。,电路如图,求:UAB,V阳 =6 V V阴 =12 V

11、 V阳V阴 二极管导通 若忽略管压降,二极管可看作短路,UAB = 6V 否则, UAB低于6V一个管压降,为6.3或6.7V,例1:,取 B 点作参考点,断开二极管,分析二极管阳极和阴极的电位。,在这里,二极管起钳位作用。,两个二极管的阴极接在一起 取 B 点作参考点,断开二极管,分析二极管阳极和阴极的电位。,V1阳 =6 V,V2阳=0 V,V1阴 = V2阴= 12 V UD1 = 6V,UD2 =12V UD2 UD1 D2 优先导通, D1截止。 若忽略管压降,二极管可看作短路,UAB = 0 V,例2:,D1承受反向电压为6 V,流过 D2 的电流为,求:UAB,在这里, D2 起

12、钳位作用, D1起隔离作用。,ui 8V,二极管导通,可看作短路 uo = 8V ui 8V,二极管截止,可看作开路 uo = ui,已知: 二极管是理想的,试画出 uo 波形。,8V,例3:,二极管的用途: 整流、检波、 限幅、钳位、开 关、元件保护、 温度补偿等。,参考点,二极管阴极电位为 8 V,14.4 稳压二极管,稳压管是一种特殊的面接触型二极管。它在电路中常用作稳定电压的作用,故称为稳压管。,一、稳压管的图形符号:,二、稳压管的伏安特性:,稳压管的伏安特性曲线与普通二极管类似,只是反向曲线更陡一些。,伏安特性,1. 符号,UZ,IZ,IZM, UZ, IZ,2. 伏安特性,稳压管正

13、常工作时加反向电压,使用时要加限流电阻,稳压管反向击穿后,电流变化很大,但其两端电压变化很小,利用此特性,稳压管在电路中可起稳压作用。,3. 主要参数,(1) 稳定电压UZ 稳压管正常工作(反向击穿)时管子两端的电压。,(2) 电压温度系数 环境温度每变化1C引起稳压值变化的百分数。,(3) 动态电阻,(4) 稳定电流 IZ 、最大稳定电流 IZM,(5) 最大允许耗散功率 PZM = UZ IZM,rZ愈小,曲线愈陡,稳压性能愈好。,14.5 半导体三极管,14.5.1 基本结构,14.5 半导体三极管,晶体管的结构示意图和表示符号,(a)NPN型晶体管;,(b)PNP型晶体管,基区:最薄,

14、 掺杂浓度最低,发射区:掺 杂浓度最高,发射结,集电结,结构特点:,集电区: 面积最大,14. 5. 2 电流分配和放大原理,1. 三极管放大的外部条件,发射结正偏、集电结反偏,PNP 发射结正偏 VBVE 集电结反偏 VCVB,从电位的角度看: NPN 发射结正偏 VBVE 集电结反偏 VCVB,晶体管电流放大的实验电路 ,设 EC = 6 V,改变可变电阻 RB, 则基极电流 IB、集电极电流 IC 和发射极电流 IE 都发生变化,测量结果如下表:,2. 各电极电流关系及电流放大作用,晶体管电流测量数据,结论:,(1) IE = IB + IC 符合基尔霍夫定律 (2) IC IB , I

15、C IE (3) IC IB,把基极电流的微小变化能够引起集电极电流较大 变化的特性称为晶体管的电流放大作用。,实质: 用一个微小电流的变化去控制一个较大电流 的变化,是CCCS器件。,(a) NPN 型晶体管;,电流方向和发射结与集电结的极性,(4) 要使晶体管起放大作用,发射结必须正向 偏置,集电结必须反向偏置。,(b) PNP 型晶体管,3.三极管内部载流子的运动规律,基区空穴向发射区的扩散可忽略。,发射结正偏,发射区电子不断向基区扩散,形成发射极电流IE。,进入P 区的电子少部分与基区的空穴复合,形成电流IBE ,多数扩散到集电结。,从基区扩散来的电子作为集电结的少子,漂移进入集电结而

16、被收集,形成ICE。,集电结反偏,有少子形成的反向电流ICBO。,3. 三极管内部载流子的运动规律,IC = ICE+ICBO ICE,IB = IBE- ICBO IBE,ICE 与 IBE 之比称为共发射极电流放大倍数,集射极穿透电流, 温度ICEO,(常用公式),若IB =0, 则 IC ICE0,14.5.3 特性曲线,即管子各电极电压与电流的关系曲线,是管子内部载流子运动的外部表现,反映了晶体管的性能,是分析放大电路的依据。,为什么要研究特性曲线: (1)直观地分析管子的工作状态 (2)合理地选择偏置电路的参数,设计性能良好的电路,重点讨论应用最广泛的共发射极接法的特性曲线,发射极是输入回路、输出回路的公共端,共发射极电路,输入回路,输出回路,测量晶体管特性的实验线路,1. 输入特性,特点:非线性,正常工作时发射结电压: NPN型硅管 UBE 0

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 教学课件 > 高中课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号