第二节分子的立体构型(上课用)课件

上传人:我*** 文档编号:141153513 上传时间:2020-08-04 格式:PPT 页数:46 大小:2.47MB
返回 下载 相关 举报
第二节分子的立体构型(上课用)课件_第1页
第1页 / 共46页
第二节分子的立体构型(上课用)课件_第2页
第2页 / 共46页
第二节分子的立体构型(上课用)课件_第3页
第3页 / 共46页
第二节分子的立体构型(上课用)课件_第4页
第4页 / 共46页
第二节分子的立体构型(上课用)课件_第5页
第5页 / 共46页
点击查看更多>>
资源描述

《第二节分子的立体构型(上课用)课件》由会员分享,可在线阅读,更多相关《第二节分子的立体构型(上课用)课件(46页珍藏版)》请在金锄头文库上搜索。

1、第二节 分子的立体构型,第一课时 价层互斥理论,活动:,1、利用几何知识分析一下,空间分布的两个点是否一定在同一直线?,迁移:两个原子构成的分子,将这2个原子看成两个点,则它们在空间上可能构成几种形状?分别是什么?,O2,HCl,活动:,2、利用几何知识分析一下,空间分布的三个点是否一定在同一直线上?,迁移:三个原子构成的分子,将这3个原子看成三个点,则它们在空间上可能构成几种形状?分别是什么?,结论:,在多原子构成的分子中,由于原子间排列的空间顺序不一样,使得分子有不同的结构,这就是所谓的分子的立体构型。,一、形形色色的分子,H2O,CO2,1、三原子分子立体结构,直线形 180,V形 10

2、5,一、形形色色的分子,2、四原子分子立体结构,HCHO,NH3,平面三角形 120,三角锥形 107,3、五原子分子立体结构,一、形形色色的分子,CH4,正四面体,4、其它,一、形形色色的分子,P4,正四面体 60,C2H2,直线形 180,同为三原子分子,CO2 和 H2O 分子的空间结构却不同,什么原因?,思考:,同为四原子分子,CH2O与 NH3 分子的的空间结构也不同,什么原因?,二、价层互斥理论,1.内容,对ABn型的分子或离子,中心原子A价层电子对(包括成键键电子对和未成键的孤对电子对)之间由于存在排斥力,将使分子的几何构型总是采取电子对相互排斥最小的那种构型,以使彼此之间斥力最

3、小,分子体系能量最低,最稳定。,键电子对和孤对电子对,排斥力最小,二、价层互斥理论,2.价层电子对(键电子对和未成键的孤对电子对),H2O,NH3,CO2,CH4,2,3,4,2,2,2,4,3,1,4,4,0,4,2,0,2,=键个数+中心原子上的孤对电子对个数,价层电子对数,键电子对数 = 与中心原子结合的原子数,中心原子上的孤电子对数 =(a-xb),2.成键键电子对和未成键的孤对电子对,键电子对数 = 与中心原子结合的原子数,=键个数+中心原子上的孤对电子对个数,价层电子对数,6,1,5-1=4,0,4+2=6,0,2,2,4,1,3,2,孤电子对的计算,6,2,1,2,=(a-xb)

4、,二、价层互斥理论,剖析内容,对ABn型的分子或离子,中心原子A价层电子对(包括成键键电子对和未成键的孤对电子对)之间由于存在排斥力,将使分子的几何构型总是采取电子对相互排斥最小的那种构型,以使彼此之间斥力最小,分子体系能量最低,最稳定。,排斥力最小,A,3.价电子对的空间构型即VSEPR模型,电子对数目: VSEPR模型:,二、价层互斥理论,直线,平面三角形,正四面体,2,3,4,二、价层互斥理论,4. VSEPR模型应用预测分子立体构型,2,3,2,0,0,1,直线形,直线形,平面三角形,平面三角形,V形,平面三角形,中心原子的孤对电子也要占据中心原子的空间,并与成键电子对互相排斥。推测分

5、子的立体模型必须略去VSEPR模型中的孤电子对,二、价层互斥理论,4.价电子对的空间构型即VSEPR模型应用,4,3,2,0,1,2,正四面体,正四面体,正四面体,三角锥形,正四面体,V形,应用反馈,2,0,2,3,空间构型,V形,平面三角形,V 形,2,2,平面三角形,四面体,四面体,ABn 型分子的VSEPR模型和立体结构,2,3,平面 三角 形,2 0 AB2,直线形 CO2,3 0 AB3,2 1 AB2,价,层,电,子,对,数,平面三角形 BF3,V形,SO2,小结:,直线形,模型,4,正四面 体,4 0 AB4,3 1 AB3,2 2 AB2,正四面体 CH4,三角锥形 NH3,V

6、形,H2O,1.若ABn型分子的中心原子A上没有未用于形 成共价键的孤对电子,运用价层电子对互斥模 型,下列说法正确的( ) A.若n=2,则分子的立体构型为V形 B.若n=3,则分子的立体构型为三角锥形 C.若n=4,则分子的立体构型为正四面体形 D.以上说法都不正确,C,牛刀小试,2.用价层电子对互斥模型判断SO3的分子构型 A、正四面体形 B、V形 C、三角锥形 D、平面三角形,D,课堂练习: 1、多原子分子的立体结构有多种,三原子分子的立体结构有 形和 形,大多数四原子分子采取 形和 形两种立体结构,五原子分子的立体结构中最常见的是 形。 2 、下列分子或离子中,不含有孤对电子的是 A

7、、H2O、B、H3O+、C、NH3、D、NH4+ 3 、下列分子BCl3、CCl4、H2S、CS2中,其键角由小到大的顺序为 4、以下分子或离子的结构为正四面体,且键角为10928 的是 CH4 NH4+ CH3Cl P4 SO42- A、 B、 C、 D、,直线,V,平面三角,三角锥, ,D,C,正四面体,第二节 分子的立体构型,第二课时杂化理论,活动:请根据价层电子对互斥理论分析CH4的立体构型,新问题1:,1.写出碳原子的核外电子排布图,思考为什么碳原子与氢原子结合形成CH4,而不是CH2 ?,新问题2:,按照我们已经学过的价键理论,甲烷的4个C H单键 都应该是键,然而,碳原子的4个价

8、层原子轨道是3 个相互垂直的2p 轨道和1个球形的2s轨道,用它们跟4 个氢原子的1s原子轨道重叠,不可能得到四面体构型 的甲烷分子,C,为了解决这一矛盾,鲍林提出了杂化轨道理论,C:2s22p2,由1个s轨道和3个p轨道混杂并重新组合成4个能量与形状完全相同的轨道。我们把这种轨道称之为 sp3杂化轨道。,为了四个杂化轨道在空间尽可能远离,使轨道间的排斥最小,4个杂化轨道的伸展方向成什么立体构型?,四个H原子分别以4个s轨道与C原子上的四个sp3杂化轨道相互重叠后,就形成了四个性质、能量和键角都完全相同的S-SP3键,从而构成一个正四面体构型的分子。,三、杂化理论简介,1.概念:在形成分子时,

9、在外界条件影响下若干不同类型能量相近的原子轨道混合起来,重新组合成一组新轨道的过程叫做原子轨道的杂化,所形成的新轨道就称为杂化轨道。,2.要点:,(1)参与参加杂化的各原子轨道能量要相近(同一能级组或相近能级组的轨道);,(2)杂化前后原子轨道数目不变:参加杂化的轨道数目等于形成的杂化轨道数目;但杂化轨道改变了原子轨道的形状方向,在成键时更有利于轨道间的重叠;,三、杂化理论简介,2.要点:,(1)参与参加杂化的各原子轨道能量要相近(同一能级组或相近能级组的轨道);,(2)杂化前后原子轨道数目不变:参加杂化的轨道数目等于形成的杂化轨道数目;但杂化轨道改变了原子轨道的形状方向,在成键时更有利于轨道

10、间的重叠;,(3)杂化前后原子轨道为使相互间排斥力最小,故在空间取最大夹角分布,不同的杂化轨道伸展方向不同;,sp杂化轨道的形成过程,180,每个sp杂化轨道的形状为一头大,一头小, 含有1/2 s 轨道和1/2 p 轨道的成分 两个轨道间的夹角为180,呈直线型,sp 杂化:1个s 轨道与1个p 轨道进行的杂化, 形成2个sp杂化轨道。,Cl,Cl,Be,例如: Sp 杂化 BeCl2分子的形成,Be原子:1s22s2 没有单个电子,,sp2杂化轨道的形成过程,120,每个sp2杂化轨道的形状也为一头大,一头小, 含有 1/3 s 轨道和 2/3 p 轨道的成分 每两个轨道间的夹角为120,

11、呈平面三角形,sp2杂化:1个s 轨道与2个p 轨道进行的杂化, 形成3个sp2 杂化轨道。,例如: Sp2 杂化 BF3分子的形成,B: 1s22s22p1没有3个成单电子,sp3杂化轨道的形成过程,sp3杂化:1个s 轨道与3个p 轨道进行的杂化, 形成4个sp3 杂化轨道。,每个sp3杂化轨道的形状也为一头大,一头小, 含有 1/4 s 轨道和 3/4 p 轨道的成分 每两个轨道间的夹角为109.5, 空间构型为正四面体型,例如: Sp3 杂化 CH4分子的形成,C:2s22p2,三、杂化理论简介,3.杂化轨道分类:,CH4原子轨道杂化,等性杂化:参与杂化的各原子轨道进行成分的均匀混合。

12、 杂化轨道 每个轨道的成分 轨道间夹角( 键角) sp 1/2 s,1/2 p 180 sp2 1/3 s,2/3 p 120 sp3 1/4 s,3/4p 10928,3.杂化轨道分类:,三、杂化理论简介,H2O原子轨道杂化,O原子:2s22p4 有2个单电子,可形成2个共价键,键角应当是90,Why?,杂化,不等性杂化:参与杂化的各原子轨道进行成分上的 不均匀混合。某个杂化轨道有孤电子对,排斥力:孤电子对-孤电子对孤电子对-成键电子对成键电子对-成键电子对,三、杂化理论简介,4.杂化类型判断:,因为杂化轨道只能用于形成键或用来容纳孤电子对,故有,杂化类型的判断方法:先确定分子或离子的VSE

13、PR模型,然后就可以比较方便地确定中心原子的杂化轨道类型。,=中心原子孤对电子对数中心原子结合的原子数,杂化轨道数=中心原子价层电子对数,三、杂化理论简介,4.杂化类型判断:,对于ABm型分子或离子,其中心原子A的杂化轨道数恰好与A的价电子对数相等。,2,3,4,sp,sp2,sp3,直线型,平面三角形,正四面体,直线型,平面三角形,正四面体,直线型,平面三角形或V形,正四面体三角锥形或V形,例1:计算下列分子或离子中的价电子对数,并根据已学填写下表,2,2,3,4,4,4,4,4,sp,sp,sp2,sp3,直线形,直线形,平面三角形,正四面体,180,180,120,109.5,直线形,直

14、线形,平面三角形,正四面体,V形,三角锥形,180,180,120,109.5,109.5,104.5,107.3,107.3,课堂练习,例题二:对SO2与CO2说法正确的是( ) A都是直线形结构 B中心原子都采取sp杂化轨道 C S原子和C原子上都没有孤对电子 D SO2为V形结构, CO2为直线形结构,D,试用杂化轨道理论分析乙烯和乙炔分子的成键情况,交流讨论,C原子在形成乙烯分子时,碳原子的2s轨道与2个2p轨道发生杂化,形成3个sp2杂化轨道,伸向平面正三角形的三个顶点。每个C原子的2个sp2杂化轨道分别与2个H原子的1s轨道形成2个相同的键,各自剩余的1个sp2杂化轨道相互形成一个键,各自没有杂化的l个2p轨道则垂直于杂化轨道所在的平面,彼此肩并肩重叠形成键。所以,在乙烯分子中双键由一个键和一个键构成。,C原子在形成乙炔分子时发生sp杂化,两个碳原子以sp杂化轨道与氢原子的1s轨道结合形成键。各自剩余的1个sp杂化轨道相互形成1个键,两个碳原子的未杂化2p轨道分别在Y轴和Z轴方向重叠形成键。所以乙炔分子中碳原子间以叁键相结合。,大 键 C6H6,sp2杂化,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > PPT模板库 > PPT素材/模板

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号