{生物科技管理}DNA的生物合成

上传人:卓****库 文档编号:141007316 上传时间:2020-08-03 格式:PPTX 页数:54 大小:655.71KB
返回 下载 相关 举报
{生物科技管理}DNA的生物合成_第1页
第1页 / 共54页
{生物科技管理}DNA的生物合成_第2页
第2页 / 共54页
{生物科技管理}DNA的生物合成_第3页
第3页 / 共54页
{生物科技管理}DNA的生物合成_第4页
第4页 / 共54页
{生物科技管理}DNA的生物合成_第5页
第5页 / 共54页
点击查看更多>>
资源描述

《{生物科技管理}DNA的生物合成》由会员分享,可在线阅读,更多相关《{生物科技管理}DNA的生物合成(54页珍藏版)》请在金锄头文库上搜索。

1、第十章 DNA的生物合成 Chapter 10 Biosynthesis of DNA,DNA复制的特点 DNA复制的条件 DNA生物合成过程 DNA的损伤与修复,教学目的: 1.掌握DNA复制的特点 2.了解DNA复制的条件 3.掌握DNA的生物合成过程 4.了解DNA的损伤与修复 教学重点难点: DNA复制的特点 DNA的生物合成过程 教学课时:2,DNA是由四种脱氧核糖核酸所组成的长链大分子,是遗传信息的携带者。 生物体的遗传信息就贮存在DNA的四种脱氧核糖核酸的排列顺序中。,DNA通过复制将遗传信息由亲代传递给子代;通过转录和翻译,将遗传信息传递给蛋白质分子,从而决定生物的表现型。DN

2、A的复制、转录和翻译过程就构成了遗传学的中心法则。 在RNA病毒中,其遗传信息贮存在RNA分子中。因此,在这些生物体中,遗传信息的流向是RNA通过复制,将遗传信息由亲代传递给子代,通过反转录将遗传信息传递给DNA,再由DNA通过转录和翻译传递给蛋白质,这种遗传信息的流向就称为反中心法则。,DNA dependent DNA polymeraseDDDP DNA dependent RNA polymeraseDDRP RNA dependent RNA polymeraseRDRP RNA dependent DNA polymeraseRDDP,第一节 DNA复制的特点,一、半保留复制 DN

3、A在复制时,以亲代DNA的每一股作模板,合成完全相同的两个双链子代DNA,每个子代DNA中都含有一股亲代DNA链,这种现象称为DNA的半保留复制(semi-conservative replication)。,DNA以半保留方式进行复制,是在1958年由M. Meselson 和 F. Stahl 所完成的实验所证明。该实验首先将大肠杆菌在含15N的培养基中培养约十五代,使其DNA中的碱基氮均转变为15N。将大肠杆菌移至只含14N的培养基中同步培养一代、二代、三代。分别提取DNA,作密度梯度离心,可得到下列结果:,二、有一定的复制起始点 DNA在复制时,需在特定的位点起始,这是一些具有特定核苷

4、酸排列顺序的片段,即复制起始点(复制子)。在原核生物中,复制起始点通常为一个,而在真核生物中则为多个。,三、需要引物 参与DNA复制的DNA聚合酶,必须以一段具有3端自由羟基(3-OH)的RNA作为引物(primer) ,才能开始聚合子代DNA链。 RNA引物的大小,在原核生物中通常为50100个核苷酸,而在真核生物中约为10个核苷酸。RNA引物的碱基顺序,与其模板DNA的碱基顺序相配对。,四、双向复制 DNA复制时,以复制起始点为中心,向两个方向进行复制。但在低等生物中,也可进行单向复制(如滚环复制)。,五、半不连续复制 由于DNA聚合酶只能以53方向聚合子代DNA链,即模板DNA链的方向必

5、须为35。因此,分别以两条亲代DNA链作为模板聚合子代DNA链时的方式是不同的。,以35方向的亲代DNA链作模板的子代链在复制时基本上是连续进行的,其子代链的聚合方向为53,这一条链被称为领头链(leading strand)。而以53方向的亲代DNA链为模板的子代链在复制时则是不连续的,其链的聚合方向也是53,这条链被称为随从链(lagging strand)。,由于亲代DNA双链在复制时是逐步解开的,因此,随从链的合成也是一段一段的。DNA在复制时,由随从链所形成的一些子代DNA短链称为冈崎片段(Okazaki fragment)。 冈崎片段的大小,在原核生物中约为10002000个核苷酸

6、,而在真核生物中约为100个核苷酸。,第二节 DNA复制的条件,一、底物 以四种脱氧核糖核酸(deoxynucleotide triphosphate)为底物,即dATP,dGTP,dCTP,dTTP。 (dNMP)n+dNTP (dNMP)n+1+PPi,二、模板(template) DNA复制是模板依赖性的,必须要以亲代DNA链作为模板。亲代DNA的两股链解开后,可分别作为模板进行复制。,三、引发体和RNA引物 引发体(primosome)由引发前体与引物酶(primase)组装而成。 引发前体是由若干蛋白因子聚合而成的复合体。在原核生物中,引发前体至少由六种蛋白因子构成。蛋白i、蛋白n、

7、蛋白n”、蛋白dnaC与引物预合成有关,蛋白n与蛋白dnaB与识别复制起始点有关,并具有ATPase活性。 引物酶本质上是一种依赖DNA的RNA聚合酶(DDRP),该酶以DNA为模板,聚合一段RNA短链引物(primer),以提供自由的3-OH,使子代DNA链能够开始聚合。,四、DNA聚合酶 (DDDP),(一)种类和生理功能: 在原核生物中,目前发现的DNA聚合酶有三种,分别命名为DNA聚合酶(pol ),DNA聚合酶(pol ),DNA聚合酶(pol ),这三种酶都属于具有多种酶活性的多功能酶。参与DNA复制的主要是pol 和pol 。,pol 为单一肽链的大分子蛋白质,可被特异的蛋白酶水

8、解为两个片段,其中的大片段称为Klenow fragment,具有53聚合酶活性和35外切酶的活性。,pol 由十种亚基组成,其中亚基具有53聚合DNA的酶活性,因而具有复制DNA的功能;而亚基具有35外切酶的活性,因而与DNA复制的校正功能有关。,原核生物中的三种DNA聚合酶,在真核生物中,目前发现的DNA聚合酶有五种,分别命名为DNA聚合酶(pol ),DNA聚合酶(pol ),DNA聚合酶(pol ),DNA聚合酶(pol ),DNA聚合酶(pol )。 其中,参与染色体DNA复制的是pol (延长随从链)和pol (延长领头链),参与线粒体DNA复制的是pol ,pol与DNA损伤修复

9、、校读和填补缺口有关,pol 只在其他聚合酶无活性时才发挥作用。,(二)DNA复制的保真性: 为了保证遗传的稳定,DNA的复制必须具有高保真性。DNA复制时的保真性主要与下列因素有关: 1遵守严格的碱基配对规律; 2DNA聚合酶在复制时对碱基的正确选择; 3对复制过程中出现的错误及时进行校正。,五、DNA连接酶 DNA连接酶(DNA ligase)可催化两段DNA片段之间磷酸二酯键的形成,而使两段DNA连接起来。,DNA连接酶催化的条件是: 需一段DNA片段具有3-OH,而另一段DNA片段具有5-Pi基; 未封闭的缺口位于双链DNA中,即其中有一条链是完整的; 需要消耗能量,在原核生物中由NA

10、D+供能,在真核生物中由ATP供能。,六、单链DNA结合蛋白 单链DNA结合蛋白(single strand binding protein, SSB)又称螺旋反稳蛋白(HDP)。这是一些能够与单链DNA结合的蛋白质因子。其作用为: 使解开双螺旋后的DNA单链能够稳定存在,即稳定单链DNA,便于以其为模板复制子代DNA; 保护单链DNA,避免核酸酶的降解。,七、解螺旋酶 解螺旋酶(unwinding enzyme) ,又称解链酶或rep蛋白,是用于解开DNA双链的酶蛋白,每解开一对碱基,需消耗两分子ATP。目前发现存在至少存在两种解螺旋酶。,八、拓扑异构酶(topoisomerase) 拓扑异

11、构酶可使DNA双链中的一条链切断,松开双螺旋后再将DNA链连接起来,从而避免出现链的缠绕。拓扑异构酶可切断DNA双链,使DNA的超螺旋松解后,再将其连接起来。,大肠杆菌拓朴异构酶的结构,第三节 DNA生物合成过程,一、复制的起始 DNA复制的起始阶段,由下列两步构成。 (一)预引发: 1解旋解链,形成复制叉: 由拓扑异构酶和解链酶作用,使DNA的超螺旋及双螺旋结构解开,碱基间氢键断裂,形成两条单链DNA。单链DNA结合蛋白(SSB)结合在两条单链DNA上,形成复制叉。 DNA复制时,局部双螺旋解开形成两条单链,这种叉状结构称为复制叉。,2引发体组装: 由蛋白因子(如dnaB等)识别复制起始点,

12、并与其他蛋白因子以及引物酶一起组装形成引发体。,(二)引发: 在引物酶的催化下,以DNA为模板,合成一段短的RNA片段,从而获得3端自由羟基(3-OH)。,二、复制的延长,(一)聚合子代DNA: 由DNA聚合酶催化,以35方向的亲代DNA链为模板,从53方向聚合子代DNA链。在原核生物中,参与DNA复制延长的是DNA聚合酶;而在真核生物中,是DNA聚合酶(延长随从链)和(延长领头链)。,(二)引发体移动: 引发体向前移动,解开新的局部双螺旋,形成新的复制叉,随从链重新合成RNA引物,继续进行链的延长。,三、复制的终止,(一)去除引物,填补缺口: 在原核生物中,由DNA聚合酶来水解去除RNA引物

13、,并由该酶催化延长引物缺口处的DNA,直到剩下最后一个磷酸酯键的缺口。而在真核生物中,RNA引物的去除,由一种特殊的核酸酶来水解,而冈崎片段仍由DNA聚合酶来延长。,(二)连接冈崎片段: 在DNA连接酶的催化下,形成最后一个磷酸酯键,将冈崎片段连接起来,形成完整的DNA长链。,(三)真核生物端粒的形成: 端粒(telomere)是指真核生物染色体线性DNA分子末端的结构部分,通常膨大成粒状。其共同的结构特征是由一些富含G、C的短重复序列构成,可重复数十次至数百次。,线性DNA在复制完成后,其末端由于引物RNA的水解而可能出现缩短。故需要在端粒酶(telomerase)的催化下,进行延长反应。

14、端粒酶是一种RNA-蛋白质复合体,它可以其RNA为模板,通过逆转录过程对末端DNA链进行延长。,端粒酶(telomerase)的作用机制,第四节 DNA的损伤与修复,一、DNA的损伤(突变) 由自发的或环境的因素引起DNA一级结构的任何异常的改变称为DNA的损伤,也称为突变(mutation)。 常见的DNA的损伤包括碱基脱落、碱基修饰、交联,链的断裂,重组等。,(一)引起突变的因素: 1自发因素: (1)自发脱碱基:由于N-糖苷键的自发断裂,引起嘌呤或嘧啶碱基的脱落。每日可达近万个核苷酸残基。 (2)自发脱氨基:胞嘧啶自发脱氨基可生成尿嘧啶,腺嘌呤自发脱氨基可生成次黄嘌呤。每日可达几十到几百

15、个核苷酸残基。 (3)复制错配:由于复制时碱基配对错误引起的损伤,发生频率较低。,2物理因素: 由紫外线、电离辐射、X射线等引起的DNA损伤。其中,X射线和电离辐射常常引起DNA链的断裂,而紫外线常常引起嘧啶二聚体的形成,如TT,TC,CC等二聚体。这些嘧啶二聚体由于形成了共价键连接的环丁烷结构,因而会引起复制障碍。,3化学因素: (1)脱氨剂:如亚硝酸与亚硝酸盐,可加速C脱氨基生成U,A脱氨基生成I。,(2)烷基化剂:这是一类带有活性烷基的化合物,可提供甲基或其他烷基,引起碱基或磷酸基的烷基化,甚至可引起邻近碱基的交联。 (3)DNA加合剂:如苯并芘,在体内代谢后生成四羟苯并芘,与嘌呤共价结

16、合引起损伤。 (4)碱基类似物:如5-FU,6-MP等,可掺入到DNA分子中引起损伤或突变。 (5)断链剂:如过氧化物,含巯基化合物等,可引起DNA链的断裂。,(二)DNA突变的类型:,碱基的转换,(三)DNA突变的效应: 1同义突变:基因突变导致mRNA暗码子第三位碱基的改变但不引起暗码子意义的改变,其翻译产物中的氨基酸残基顺序不变,但有时可引起翻译效率降低。 2误义突变:基因突变导致mRNA暗码子碱基被置换,其意义发生改变,翻译产物中的氨基酸残基顺序发生改变。 3无义突变:基因突变导致mRNA暗码子碱基被置换而改变成终止暗码子,引起多肽链合成的终止。 4移码突变:基因突变导致mRNA暗码子碱基被置换,引起突变点之后的氨基酸残基顺序全部发生改变。,二、DNA损伤的修复,DNA损伤的修复方式可分为直接修复和取代修复两大类。,(一)直接修复

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业/管理/HR > 企业文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号