《概率论在实际生活中的应用》-公开DOC·毕业论文

上传人:zhuma****mei2 文档编号:136343600 上传时间:2020-06-27 格式:DOC 页数:28 大小:1.11MB
返回 下载 相关 举报
《概率论在实际生活中的应用》-公开DOC·毕业论文_第1页
第1页 / 共28页
《概率论在实际生活中的应用》-公开DOC·毕业论文_第2页
第2页 / 共28页
《概率论在实际生活中的应用》-公开DOC·毕业论文_第3页
第3页 / 共28页
《概率论在实际生活中的应用》-公开DOC·毕业论文_第4页
第4页 / 共28页
《概率论在实际生活中的应用》-公开DOC·毕业论文_第5页
第5页 / 共28页
点击查看更多>>
资源描述

《《概率论在实际生活中的应用》-公开DOC·毕业论文》由会员分享,可在线阅读,更多相关《《概率论在实际生活中的应用》-公开DOC·毕业论文(28页珍藏版)》请在金锄头文库上搜索。

1、l第一章 绪论 1.1 概率论的发展人类认识到随机现象的存在是很早的。从太古时代起,估计各种可能性就一直是人类的一件要事。早在古希腊哲学家就已经注意到必然性与偶然性问题;我国春秋时期也已有可考词语(辞海);即使提到数学家记事日程上的可考记载,也至少可推到中世纪。有史记载15世纪上半叶,就已有数学家在考虑这类问题了。如在意大利数学家帕乔利(L.pacioli)1494年出版的算术一书中就有以下问题:两人进行赌博,规定谁先获胜6场谁为胜者。一次,当甲已获胜5场,乙也获胜2场时,比赛因故中断。那么,赌注该如何分配呢?所给答案为将赌注分成7份,按5:2分给甲乙两人。当卡丹(Cardan Jerome,

2、15011576)看到上述问题时,以为所给分法不妥。他考虑到接下去比赛的几种可能结果,并确定赌注应按10:1来分配(现在看来,其分法也是错误的)。卡丹著有论赌博一书,其中提出一些概率计算问题。如掷两颗骰子出现的点数和的各种可能性等。此外,卡丹与塔塔利亚(Tartaglia Niccolo,15001557)还考虑了人口统计、保险业等问题。但是他们的研究工作,对数学家来说,赌博味道太浓了一些,以致数学家们对其嗤之以鼻。近代自然科学创始人之一伽利略(Galileo,15641642)解决了以下问题:同时投下三颗骰子,点数和为9的情形有6种:(1、2、6)、(1、3、5)、(1、4、4)、(2、2、

3、5)、(2、3、4)和(3、3、3)。点数和为10的情形也有6种:(1、3、6)、(1、4、5)、(2、2、6)、(2、3、5)、(2、4、4)和(3、3、4),那么出现点数和为9与10的机会应相同,而经验告知,出现10的机会比出现9的机会要多,原因何在?伽利略利用列举法得出同时掷三颗骰子出现点数和为9的情形有25种,而出现点数和为10的情形却有27种。可见,已经产生了概率论的某些萌芽。概率概念的要旨只是在17世纪中叶法国数学家帕斯卡与费马的讨论中才比较明确。他们在往来的信函中讨论合理分配赌注问题。该问题可以简化为: 甲、乙两人同掷一枚硬币。规定:正面朝上,甲得一点;若反面朝上,乙得一点,先积

4、满3点者赢取全部赌注。假定在甲得2点、乙得1点时,赌局由于某种原因中止了,问应该怎样分配赌注才算公平合理。 帕斯卡:若在掷一次,甲胜,甲获全部赌注,两种情况可能性相同,所以这两种情况平均一下, 乙胜,甲、乙平分赌注 甲应得赌金的3/4,乙得赌金的1/4。 费马:结束赌局至多还要2局,结果为四种等可能情况:情况胜者甲甲甲乙乙甲乙乙前3种情况,甲获全部赌金,仅第四种情况,乙获全部赌注。所以甲分得赌金的3/4,乙得赌金的1/4。 帕斯卡与费马用各自不同的方法解决了这个问题。虽然他们在解答中没有明确定义概念,但是,他们定义了使某赌徒取胜的机遇,也就是赢得情况数与所有可能情况数的比,这实际上就是概率,所

5、以概率的发展被认为是从帕斯卡与费马开始的。正如对概率论有卓越贡献的法国数学家泊松(poisson,17811840)后来所说:“由一位广有交游的人向一位严肃的冉森派所提出的一个关于机会游戏的问题乃是概率演算的起源”。 莱布尼兹(Leibniz,16461716)于16721676年侨居巴黎时读到帕斯卡概率方面的研究成果,深刻地认识到这门“新逻辑学”的重要性,并且进行了认真的研究。在帕斯卡与费马通信讨论赌博问题的那一年,雅各伯努利(Jacob Bernoulli,16541705)诞生了。在1713年出版的其遗著猜度术中首次提出了后来以“伯努利定理”著称的极限定理:若在一系列独立试验中,事件发生

6、的概率为常数P,那么对0以及充分大的试验次数n,有,其中k为事件A在n次试验中事件出现的次数,伯努利定理刻画了大量经验观测中呈现的稳定性,作为大数定律的最早形式而在概率论发展史上占有重要地位。伯努利认为:先前人们对概率概念,多半从主观方面来解释,即说成是一种“期望”,这种期望是先验的等可能性的假设,是以古典概型为依据的。这种方法有极大的局限性,也许只在赌博中可用;在更多的场合,由于无法数清所有的可能情况,也无法确定不同情况的可能性彼此间的大小,这种方法就不可行。他提出,为了处理更大范围的问题,必须选择另一条道路,那就是“后验地去探知我们所无法先验地确定的东西,也就是从大量相关事例的观察结果中去

7、探知它”。这样一来,就从主观的“期望”解释转到了客观的“频率”解释。大数定律可以说明目前的大多数概率应用。由于有了它,任一种预测的准确程度将随着例数增多而提高。这就是为什么承得一个特殊事件的保险费的收费标准,要高于大量的一般事件的保险费标准的原因。伯努利之后,棣莫弗(A.De Moivre,16671754)于1733年和高斯(Gauss,17771857)于1809年各自独立引进了正态分布;蒲丰(G.L.L Buffon,17071778)于1777年提出了投针问题的几何概率;泊松于1837年陈述了泊松大数定律等。特别是拉普拉斯(P.S.Laplace,17491827)1812年出版的概率

8、的分析理论以强有力的分析工具处理概率论的基本内容,使以往零散的结果系统化。拉普拉斯的著作实现了从组合技巧向分析方法的过渡,开辟了概率论发展的新时期。正是在这部著作中,拉普拉斯给出了概率的古典定义:事件的概率等于一次试验中有利于事件A的可能结果数与该试验中所有可能结果数之比。籍此拉普拉斯曾以“中立原理”计算出第二天太阳升起的概率为1/826214。值得说明的是,拉普拉斯认为世界是决定性的,偶然性只是出于人们的无知如果我们能预知一切情况,以后的发展使可全知。关于这点拉普拉斯在其概率论的哲学试验中说的很明确:“智慧如果能在某一瞬间知道转动着自然的一切力量,知道大自然所有组成部分的相对位置,再者,如果

9、它是如此浩瀚,足以分析这些材料,并能把上到庞大的天体、下至微小的原子的所有运动悉数囊括在一个公式之中,那末,对于它来说,就没有什么东西是不可靠的了,无论是将来或过去,在它面前都会昭然若揭”。按此观点,宇宙的一切发展,早在混沌初开时就完全决定下来,岂不荒唐!19世纪后期,极限理论的发展成为概率论研究的中心课题,俄国数学家切比雪夫在这方面作出了重要贡献。他在1866年建立了关于独立随机变量序列的大数定律,使伯努利定理和泊松大数定理成为其特例。切比雪夫还将棣莫弗-拉普拉斯极限定理推广为更一般的中心极限定理。切比雪夫的成果后又被他的学生马尔可夫(A.A.Makpob,18561922)发扬光大,推进了

10、20世纪概率论发展的进程。19世纪末,概率论在统计物理等领域的应用提出了对概率论基本概念与原理进行解释的需要。另外,科学家们在这一时期发现的一些概率论悖论也揭示出古典概率论中基本概念存在的矛盾与含糊之处,其中最著名的是所谓“贝特朗悖论”。1899年由法国学者贝特朗(J.Bertrand)提出:在半径为r的圆内随机选择弦,计算弦长超过圆内接正三角形边长的概率根据“随机选择”的不同意义,可以得到不同的答案。这类悖论说明概率的概念是以某种确定的实验为前提的,这种实验有时由问题本身所明确规定,有时则不然。因此,贝特朗等悖论的矛头直指概率概念本身,尤其是拉普拉斯的古典概率定义开始受到猛烈批评。这样,到1

11、9世纪,无论是概率论的实际应用还是其自身发展,都强烈地要求对概率论的逻辑基础作出更加严格的考察。鉴此,1900年夏,38岁的德国代表希尔伯特(D.Hilbort,18621943)在世界数学家大会上提出了建立概率公理系统的问题。这就是著名的希尔伯特23问题之中的第6个问题。这就引导一批数学家投入了这方面的工作。最早对概率论来严格化进行尝试的,是俄国数学家伯恩斯坦和奥地利数学家冯米西斯(R.von Mises,18831953)。他们都提出了一些公理来作为概率论的前提,但他们的公理理论都是不完善的。作为测度论的奠基人,博雷尔(Borel)在1905年指出概率论理论如果采用测度论术语来表述将会方便

12、许多,并首先将测度论方法引入概率论重要问题的研究,特别是1909年他提出并在特殊情形下解决了随机变量序列,服从强大数定律的条件问题博雷尔的工作激起了数学家们沿这一崭新方向的一系列探索,其中尤以原苏联数学家科尔莫戈罗夫(A.H.Kolmogorov,19031987)的研究最为卓著。从二十世纪二十年代中期起,科尔莫戈罗夫开始从测度论途径探讨整个概率论理论的严格表述。1926年,他推导了弱大数定律成立的主要条件,后又对博雷尔提出的强大数定律问题给出了一般的结果,推广了切比雪夫不等式,提出了科尔莫戈罗夫不等式,创立了可数集马尔可夫链理论,他最著名的工作是1933年以德文出版的经典性著作概率论基础。科

13、尔莫戈罗夫是莫斯科函数论学派领导人鲁金的学生,对实际函数论的运用可以说是炉火纯青。他在这部著作中建立起集合测度与事件概率的类比、积分与数学期望的类比、函数正交性与随机变量独立性的类比,等等。这种广泛的类比终于赋予了概率论以演绎数学的特征。科尔莫戈罗夫的公理系统逐渐获得了数学家们的普遍承认,由于公理化,概率论成为一门严格的演绎科学,取得了与其他数学分支同等的地位。科尔莫戈罗夫热爱教育事业,经常在大学生和进修生中挑选人才,参加讨论班。1934年,他与概率论另一位创始人辛钦共同主持概率论讨论班。在他们培养的学生中有6位成为前苏联科学院院士或通信院士。1980年科尔莫戈罗夫荣获沃尔夫奖。公理化概率论首

14、先使随机过程的研究获得了新的起点,随机过程作为随时间变化的偶然量的数学模型,是现代概率论研究的重要主题。莱维(P.Levy)从1938年开始创立研究随机过程的新方法,即着眼于轨道性质的概率方法。1948年出版的随机过程与布朗运动,提出了独立增量过程的一般理论,并以其为基础极大地推进了对作为一类特殊马尔可夫过程的布朗运动的研究。1939年维尔(J.Ville)引进“鞅”这个名称,但鞅论的奠基人是美国概率论学派的代表人物杜布(J.LDoob)。杜布从1950年开始对鞅概念进行了系统的研究而使鞅论成为一门独立的分支。鞅论使随机过程的研究进一步抽象化,不仅丰富了概率论的内容,而且为其他数学分支如调和分

15、析、复变函数、位势理论等提供了有力的工具。从1942年开始,日本数学家伊藤清引进了随机积分与随机微分方程,为一门意义深远的数学新分支随机分析的创立与发展奠定基础。1.2 随机现象与概率在自然界和现实生活中, 一些事物都是相互联系和不断发展的。在它们彼此间的联系和发展中,根据它们是否有必然的因果联系,可以分成两大类:一类是确定性的现象,指在一定条件下,必定会导致某种确定的结果。如,在标准大气压下,水加热到100,就必然会沸腾。事物间的这种联系是属于必然性的。另一类是不确定性的现象。这类现象在一定条件下的结果是不确定的。例如,同一个工人在同一台机床上加工同一种零件若干个,它们的尺寸总会有一点差异。

16、又如,在同样条件下进行小麦品种的人工催芽试验,各颗种子的发芽情况也不尽相同有强弱和早晚之别等。为什么在相同的情况下会出现这种不确定的结果呢?这是因为,人们说的“相同条件”是指一些主要条件来说的,除了这些主要条件外,还会有许多次要条件和偶然因素是人们无法事先预料的。这类现象,人们无法用必然性的因果关系,对现象的结果事先做出确定的答案。事物间的这种关系是属于偶然性的,这种现象叫做偶然现象,或者叫做随机现象。概率,简单地说,就是一件事发生的可能性的大小。比如:太阳每天都会东升西落,这件事发生的概率就是100%或者说是1,因为它肯定会发生。而太阳西升东落的概率就是0,因为它肯定不会发生。但生活中的很多现象是既有可能发生,也有可能不发生的,比如某天会不会下雨、买东西买到次品等等,这类事件的概率就介于0和100%之间, 或者说0和1之间。在日常生活中无论是股市涨跌,还是发生某

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 学术论文 > 毕业论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号