《飞机座舱盖有机玻璃的修理论文》-公开DOC·毕业论文

上传人:zhuma****mei2 文档编号:136019513 上传时间:2020-06-22 格式:DOC 页数:15 大小:438.50KB
返回 下载 相关 举报
《飞机座舱盖有机玻璃的修理论文》-公开DOC·毕业论文_第1页
第1页 / 共15页
《飞机座舱盖有机玻璃的修理论文》-公开DOC·毕业论文_第2页
第2页 / 共15页
《飞机座舱盖有机玻璃的修理论文》-公开DOC·毕业论文_第3页
第3页 / 共15页
《飞机座舱盖有机玻璃的修理论文》-公开DOC·毕业论文_第4页
第4页 / 共15页
《飞机座舱盖有机玻璃的修理论文》-公开DOC·毕业论文_第5页
第5页 / 共15页
点击查看更多>>
资源描述

《《飞机座舱盖有机玻璃的修理论文》-公开DOC·毕业论文》由会员分享,可在线阅读,更多相关《《飞机座舱盖有机玻璃的修理论文》-公开DOC·毕业论文(15页珍藏版)》请在金锄头文库上搜索。

1、分析飞机座舱盖有机玻璃的修理 摘要:飞机座舱盖玻璃包括座舱活动盖玻璃和风挡玻璃,按材质可以分为单层有机玻璃和复合玻璃两类。座舱盖玻璃是飞行员借以观察外界的透明件,又是飞机机体的结构件,其结构的完整性与飞行员的生存环境密切相关,直接影响到飞行安全和训练任务的完成。关键字:飞机座舱盖、有机玻璃、结构和修理前言:首先我们先对座舱盖进行简要阐述,飞机座舱盖特别是先进战斗机的座舱盖,属关键部件,它集多种功能于一身,既要求结构强度高、重量轻、耐冲击而且又要光学性能好,视野广,同时还要有优异的雷达隐身及视觉性能。成本要低也是不可缺少的前提条件。为了满足这些要求,座舱盖的成形工艺是基础性的因素。目前在战斗机座

2、舱成形方面主要采用层合玻璃的模压成形工艺,工艺复杂要求高、废品率高、成本高。早在20世纪90年代初,国外就在研究用注射成形法来代替模压成形,经过10年的探索,解决了一些难题。如今已基本上取得成功,即将在一些军机上试飞。正文:座舱盖成型的基本方法:1、体积注射成形的发展经过及现状 所谓体积注射成形是指大块座舱玻璃的成形,是相对层合的板材玻璃成形而言的。 据最新报道,体积注射成形(以下简称注射成形)的座舱盖于2003年底将在T38教练机上试飞,F/A-22的座舱盖也将在2004年试飞。材料为聚碳酸酯。传统的抛光、层合及压力成形法的制造工时需6个星期,而用注射成形法只需1个小时。T-38的座舱盖大约

3、重2023kg,F/A-22的重90kg,尺寸2794mm1270mm812mm。现有注射成形机可注射重205kg的工件。传统成形法的手工很昂贵,废品率有的高达2030%。 早在1993年就曾经对F-16战斗机注射成形第一个原型座舱盖,虽然能透明,但是畸变不能满足美空军的光学标准。但现在由于有了能制造实际上无缺陷的表面的工装以及体积注射成形技术,首个可飞行的注射成形座舱盖在2003年12月装载在T-38上飞行。 本来要用注塑成形制造座舱盖是不可能的。一方面是由于它的物理尺寸,但是由于开发了光学上正确的模具以及具有专利权的体积注射成形工艺来制造厚壁件才取得成功。目前EnviroTech、波音及美

4、空军已成功制成层厚达66mm的飞机透明材料,具有所需的结构性能及光学透晰度。 座舱盖的制造目前用的是Envirotech公司1963年开发的体积注射成形技术,所不同的是所用的树脂,由丙烯酸酯改为聚碳酸酯,另外还用了一些专利性的技术。所用的树脂是具有UV稳定剂的Dow plastics300树脂,注射工艺是:将树脂在挤压机中加热到熔化阶段。然后将树脂聚集在一个由EnviroTech公司设计的专用设备内,注射入模内直到完全固结为止。然后打开模具,用剥离机构将座舱盖件从芯子上取下,并在取下系统上冷却几分钟。 2、座舱盖注射成形的挑战及效益 美国EnviroTech公司市场及技术经理介绍座舱盖注射成形

5、的两大难点之一是无框架座舱盖的成形,因为要在透明材料中模塑大的固定用嵌入件,即铝、钛或复合材料件,这些零件与机身相连接。这是减少飞机机身装配的一个重要因素。由于采用注射成形技术可以生产变厚度的并模塑入起连接作用嵌入件的座舱盖,而用层合工艺时,整个座舱盖的厚度只限于均一厚度。无框架舱盖在1993年F-16的原型件时就采用了,估计将来F/A-22座舱盖仍将模塑入固定用的嵌入件。因这种方法有利于飞机隐身并且短时间内更换受损伤的舱盖而无需像传统方法那样靠螺接来紧固。 另一个挑战是注射成形机周围的干净环境问题,即要求有净室的环境。 根据来自美国空军的反馈,注射成形法的优点是生产率高、成本低,模塑嵌入件及

6、制造无边框舱盖的效益重大。另一优点是质量稳定,目前飞机舱盖的头盔显示要逐个进行校准,采用注射成形座舱盖时,由于每一舱盖均一样无需对每一头盔进行重新校准。 但并不是每种飞机舱盖都值得用昂贵的注射成形模,EnviroTech公司正在研究注射成形板料的可能性,注射成形可以生产高质量的板料从而可以取消昂贵的模压所需的抛光工序。 1993年美国空军/洛克希德的开发计划是确定注射成形舱盖用于F-16的可能性,在生产线上生产了160个舱盖。空军取样并进行了冲击、光传输以及光学透明度的试验以考察注射成形的聚碳酸酯是否可用作飞机透明件。结果令人满意,指定责成EnviroTech公司制造全尺寸的座舱盖。 目前正在

7、进行下一代透明件(NGT)的开发计划,T38及F/A-22的注射成形是计划的一部分。根据2003年1月麦道/波音的合同,制成了首个光学正确的元件,这一成果的取得是由于开发了新的模具抛光法。本文从分析座舱盖玻璃的材质和受力入手,研究座舱盖玻璃爆破的原因及预防措施,以及介绍一些座舱盖有机玻璃的损伤检查和维修。一、座舱盖玻璃的材质和受力1、座舱盖玻璃的材质飞机座舱盖玻璃包括座舱活动盖玻璃和风挡玻璃,按材质可以分为单层有机玻璃和复合玻璃两类。单层有机玻璃用于座舱活动盖玻璃和侧风挡玻璃,多层复合玻璃一般是由多层无机玻璃,或无机玻璃与有机玻璃用透明胶片层合而成,用于前风挡,具有防鸟撞的功能。航空有机玻璃的

8、主要成分是聚甲基丙稀酸甲酯,另含有增塑剂。聚甲基丙稀酸甲酯是无色透明的高分子化合物,常用的增塑剂是邻苯二甲酸二丁酯。航空有机玻璃的优点是具有很好的透光性,能透过90以上的阳光,在常温下具有较大的强度;与普通玻璃相比脆性较小,受振动时不易碎裂;耐腐蚀性和绝缘性良好;容易成形。航空有机玻璃的缺点是硬度小,容易划伤;导热性差,热膨胀系数大;受到温度、日光和溶剂等的作用时,性质会变化。2、座舱盖玻璃的受力飞行中,座舱盖玻璃除受本身的重力及机动飞行时的惯性离心力外,其受力主要取决于座舱内外压力差,座舱外的大气压力随飞行高度增高而减小,座舱内压力从满足飞行人员生理需要来看,始终保持一个大气压力(760毫米

9、水银柱)最好。如果座舱内压力始终保持一个大气压力,当飞行高度升高时,座舱内外要产生相当大的压力差。这样,一方面座舱结构必须做得很结实,使飞机结构的重量大大增加;另一方面座舱一旦损坏时,座舱压力会急剧下降(叫做“爆炸减压”),这对飞行员的生理上有很大危害。为了保证满足飞行员对体外绝对压力要求,飞机上设置了气密座舱,并通过座舱供气装置把从发动机压气机引来的增压空气经温度自动调节装置调节后,将温度适宜的新鲜空气源源不断地输入气密座舱,再由压力调节装置通过控制座舱的放气量,使座舱压力随高度的增高按照一定的规律减小,以满足飞行员对体外绝对压力266毫米水银柱的最低要求。因此,飞行高度越高、座舱内外压力差

10、越大,座舱盖玻璃的受力也越大。二、座舱盖玻璃爆破的原因当座舱盖玻璃出现裂纹、划伤和脱胶等故障时,其强度要降低;严重时,在座舱内外压力差的作用下,就会产生座舱盖玻璃爆破的事故。有机玻璃故障主要有银纹、裂纹、划伤以及由此引起的玻璃爆破。飞鸟撞击后的情况1、座舱盖有机玻璃故障(1)座舱盖有机玻璃银纹。有机玻璃导热性差,热膨胀系数大,当温度急剧变化时,在它的表面与内层之间热应力,使有机玻璃表面出现细微的裂纹,这些细微的裂纹呈现出银色光泽,所以通常称为银纹。有机玻璃产生银纹后,透光性会降低,强度和塑性下降。银纹长度分散性很大,初始发生不足毫米,发展后,从几个毫米至几个厘米,甚至几十个厘米。较重的银纹还有

11、一个特征是方向无序、相互交叉。银纹的上述特征与金属构件的裂纹不同,是高分子聚合物特殊的微观结构形成的。银纹的产生与玻璃材质有关,使用YB2航空有机玻璃,其抗裂纹性能较差,容易产生银纹;使用的YB-3或DYB-3航空有机玻璃,抗裂纹性能较好,裂纹故障就较少、较轻。舱盖玻璃银纹故障比较普遍。检查1000架飞机,有银纹的130架,占13%。按照银纹容限的规定,银纹故障舱盖中有85架超过规定。故障率8.5%。银纹的产生也与气候条件有关。南方气候湿热,明显比北方故障率高。由银纹扩展成的裂纹和槽、孔裂纹,如果不能及时发现,在飞行中快速扩展,都会导致舱盖玻璃空中爆破。报废飞机座舱盖残骸(2)座舱盖有机玻璃槽

12、、孔裂纹。玻璃上的孔和花槽在结构上是应力集中因素,强度上是薄弱环节。该部位若有加工缺陷和装配应力就很容易产生裂纹。舱盖玻璃后弧花槽裂纹多数出现在舱盖中心线及两侧的几个花槽上。首先在花槽底部与玻璃内表面的交界处产生,呈现角裂纹形式。裂纹在玻璃内表面沿航向,向前扩展,同时沿玻璃厚度扩展。一个花槽可能同时出现多个裂纹。槽、孔裂纹初始深度1毫米左右,在疲劳载荷作用下不断扩展到几个毫米或更长。如果不能及时发现,在飞行中快速扩展,都会导致舱盖玻璃空中爆破。花槽裂纹故障的产生原因,可以区分为两个类型,它们导致的裂纹故障密度变化规律不同。第一,疲劳载荷和玻璃材质老化。随着飞行小时和日历时间的延长,故障密度是单

13、调递增的。而实际故障密度变化,在寿命期内后期都有明显的回落。说明这一类因素不是花槽裂纹故障产生的主导原因。第二,材质或加工缺陷,加工或装配应力。这些因素导致的裂纹故障密度变化,初始应该是递增的;而后期,由于缺陷的暴露和应力的释放,故障密度又必然会下降。实际故障密度的变化与这一规律是一致的。因而,舱盖玻璃后弧花槽裂纹故障的产生,主要是由于玻璃材质和加工、装配工艺因素造成的。前风挡复合玻璃的炸裂2、前风挡复合玻璃的炸裂和脱胶前风挡复合玻璃炸裂主要发生在表层玻璃或中间层的承力玻璃。裂纹呈网状,使得飞行员前方视场被破坏。前风挡玻璃曾发生几起炸裂故障,内层无机钢化玻璃碎裂成颗粒状。虽然保持了座舱气密,而

14、前方视场完全破坏。玻璃炸裂有的发生在飞行中。有的发生在地面停放状态。以上几起前风挡玻璃炸裂,都是玻璃内在质量问题引起的。玻璃材质不均匀,内部存在微小的结石点。在飞行载荷或温差应力作用下,结石处应力集中,致使玻璃炸裂。人工修理前风挡复合玻璃脱胶是两层玻璃之间的透明胶合层与玻璃脱开,脱胶严重时会影响飞行员的观察。脱胶多数从周边开始,逐步向内扩展;也有从中间部位形成的,形似气泡。无机玻璃之间的聚乙烯醇缩丁醛胶片与玻璃脱开,故障率较高。无机玻璃与有机玻璃之间的粘合有的用硅凝胶。硅凝胶的拉伸强度很低,使用中热胀冷缩就可能断裂,外观特征与玻璃裂纹相似。有机玻璃银纹三、座舱盖玻璃爆破的预防与事故分析1、座舱

15、盖玻璃爆破的预防 维护工作,最重要的是及时发现座舱盖玻璃故障,确保飞行安全。具体工作主要有两项:一是及时掌握银纹的深度参数,不要超过容限规定;二是及时发现槽孔或其他部位裂纹。银纹深度测量,使用YL型舱盖玻璃银纹深度测定仪。前后弧槽孔裂纹检查,使用ZGBJ型舱盖玻璃裂纹检查仪。2、座舱盖玻璃爆破的事故分析(1)事故原因分析。舱盖破璃空中爆破有时可能导致飞机的一、二等事故,在这种情况下,应该注意飞机残骸的一个特征。玻璃先爆破,玻璃残片在航线上的位置,应该在飞机机体触地点的后方一定的距离上。(2)查找裂纹源。舱盖残留的框架多数都能保留玻璃残片,由玻璃残片断口可以分析裂纹走向。玻璃爆破裂纹扩展过程,也

16、是应力波扩展过程。应力波扩展在玻璃断口上留下的花纹,类似于波浪在海滩留下的波纹,弧形总是朝向裂纹扩展方向的。如果有足够的玻璃残片,就可从裂纹走向找到玻璃爆破的裂纹源。(3)分析裂纹源性质。裂纹源有疲劳裂纹或高应力的瞬间断裂纹;载荷应力作用裂纹或应力、腐蚀裂纹等类型。裂纹源的裂纹通常有一个很光滑的镜面区。使用几十倍的光学显微镜,有时还需要更高倍数的电子显微镜,从镜面区观察就可以确定裂纹性质。高架修理某型飞机座舱盖玻璃后弧花槽改装后,某修理厂通过近两年时间的追踪调查发现没有舱盖玻璃后弧裂纹的报告和修理后返厂的情况,此改装方法节约修理工时,降低了修理费用,缩短了修理周期。由于座舱盖有机玻璃是飞机的重要部件之一,影响其加工使用性能有很多因素,发现玻璃裂纹后的修理是事后工作,并不能保证飞机在空中飞行使用

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 毕业论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号