金属热处理原理及工艺总结-整理版研究报告

上传人:youn****329 文档编号:135409669 上传时间:2020-06-15 格式:DOC 页数:18 大小:278.50KB
返回 下载 相关 举报
金属热处理原理及工艺总结-整理版研究报告_第1页
第1页 / 共18页
金属热处理原理及工艺总结-整理版研究报告_第2页
第2页 / 共18页
金属热处理原理及工艺总结-整理版研究报告_第3页
第3页 / 共18页
金属热处理原理及工艺总结-整理版研究报告_第4页
第4页 / 共18页
金属热处理原理及工艺总结-整理版研究报告_第5页
第5页 / 共18页
点击查看更多>>
资源描述

《金属热处理原理及工艺总结-整理版研究报告》由会员分享,可在线阅读,更多相关《金属热处理原理及工艺总结-整理版研究报告(18页珍藏版)》请在金锄头文库上搜索。

1、5.实际晶体中的点缺陷,线缺陷和面缺陷对金属性能有何影响?答:如果金属中无晶体缺陷时,通过理论计算具有极高的强度,随着晶体中缺陷的增加,金属的强度迅速下降,当缺陷增加到一定值后,金属的强度又随晶体缺陷的增加而增加。因此,无论点缺陷,线缺陷和面缺陷都会造成晶格崎变,从而使晶体强度增加。同时晶体缺陷的存在还会增加金属的电阻,降低金属的抗腐蚀性能。6.为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性?答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。7.过冷度与冷却速度有

2、何关系?它对金属结晶过程有何影响?对铸件晶粒大小有何影响?答:冷却速度越大,则过冷度也越大。随着冷却速度的增大,则晶体内形核率和长大速度都加快,加速结晶过程的进行,但当冷速达到一定值以后则结晶过程将减慢,因为这时原子的扩散能力减弱。过冷度增大,F大,结晶驱动力大,形核率和长大速度都大,且N的增加比G增加得快,提高了N与G的比值,晶粒变细,但过冷度过大,对晶粒细化不利,结晶发生困难。8.金属结晶的基本规律是什么?晶核的形成率和成长率受到哪些因素的影响?答:金属结晶的基本规律是形核和核长大。受到过冷度的影响,随着过冷度的增大,晶核的形成率和成长率都增大,但形成率的增长比成长率的增长快;同时外来难熔

3、杂质以及振动和搅拌的方法也会增大形核率。9.在铸造生产中,采用哪些措施控制晶粒大小?在生产中如何应用变质处理?答:采用的方法:变质处理,钢模铸造以及在砂模中加冷铁以加快冷却速度的方法来控制晶粒大小。变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒。机械振动、搅拌。第二章 金属的塑性变形与再结晶2产生加工硬化的原因是什么?加工硬化在金属加工中有什么利弊?答:随着变形的增加,晶粒逐渐被拉长,直至破碎,这样使各晶粒都破碎成细碎的亚晶粒,变形愈大,晶粒破碎的程度愈大,这样使位错密度显著增加;同时细碎的亚晶

4、粒也随着晶粒的拉长而被拉长。因此,随着变形量的增加,由于晶粒破碎和位错密度的增加,金属的塑性变形抗力将迅速增大,即强度和硬度显著提高,而塑性和韧性下降产生所谓“加工硬化”现象。金属的加工硬化现象会给金属的进一步加工带来困难,如钢板在冷轧过程中会越轧越硬,以致最后轧不动。另一方面人们可以利用加工硬化现象,来提高金属强度和硬度,如冷拔高强度钢丝就是利用冷加工变形产生的加工硬化来提高钢丝的强度的。加工硬化也是某些压力加工工艺能够实现的重要因素。如冷拉钢丝拉过模孔的部分,由于发生了加工硬化,不再继续变形而使变形转移到尚未拉过模孔的部分,这样钢丝才可以继续通过模孔而成形。3划分冷加工和热加工的主要条件是

5、什么?答:主要是再结晶温度。在再结晶温度以下进行的压力加工为冷加工,产生加工硬化现象;反之为热加工,产生的加工硬化现象被再结晶所消除。4与冷加工比较,热加工给金属件带来的益处有哪些?答:(1)通过热加工,可使铸态金属中的气孔焊合,从而使其致密度得以提高。(2)通过热加工,可使铸态金属中的枝晶和柱状晶破碎,从而使晶粒细化,机械性能提高。(3)通过热加工,可使铸态金属中的枝晶偏析和非金属夹杂分布发生改变,使它们沿着变形的方向细碎拉长,形成热压力加工“纤维组织”(流线),使纵向的强度、塑性和韧性显著大于横向。如果合理利用热加工流线,尽量使流线与零件工作时承受的最大拉应力方向一致,而与外加切应力或冲击

6、力相垂直,可提高零件使用寿命。5为什么细晶粒钢强度高,塑性,韧性也好?答:晶界是阻碍位错运动的,而各晶粒位向不同,互相约束,也阻碍晶粒的变形。因此,金属的晶粒愈细,其晶界总面积愈大,每个晶粒周围不同取向的晶粒数便愈多,对塑性变形的抗力也愈大。因此,金属的晶粒愈细强度愈高。同时晶粒愈细,金属单位体积中的晶粒数便越多,变形时同样的变形量便可分散在更多的晶粒中发生,产生较均匀的变形,而不致造成局部的应力集中,引起裂纹的过早产生和发展。因此,塑性,韧性也越好。6金属经冷塑性变形后,组织和性能发生什么变化?答:晶粒沿变形方向拉长,性能趋于各向异性,如纵向的强度和塑性远大于横向等;晶粒破碎,位错密度增加,

7、产生加工硬化,即随着变形量的增加,强度和硬度显著提高,而塑性和韧性下降;织构现象的产生,即随着变形的发生,不仅金属中的晶粒会被破碎拉长,而且各晶粒的晶格位向也会沿着变形的方向同时发生转动,转动结果金属中每个晶粒的晶格位向趋于大体一致,产生织构现象;冷压力加工过程中由于材料各部分的变形不均匀或晶粒内各部分和各晶粒间的变形不均匀,金属内部会形成残余的内应力,这在一般情况下都是不利的,会引起零件尺寸不稳定。 7分析加工硬化对金属材料的强化作用?答:随着塑性变形的进行,位错密度不断增加,因此位错在运动时的相互交割、位错缠结加剧,使位错运动的阻力增大,引起变形抗力的增加。这样,金属的塑性变形就变得困难,

8、要继续变形就必须增大外力,因此提高了金属的强度。8已知金属钨、铁、铅、锡的熔点分别为3380、1538、327、232,试计算这些金属的最低再结晶温度,并分析钨和铁在1100下的加工、铅和锡在室温(20)下的加工各为何种加工?答:T再=0.4T熔;钨T再=0.4*(3380+273)-273=1188.2; 铁T再=0.4*(1538+273)-273=451.4; 铅T再=0.4*(327+273)-273=-33; 锡T再=0.4*(232+273)-273=-71.由于钨T再为1188.21100,因此属于热加工;铁T再为451.41100,因此属于冷加工;铅T再为-3320,属于热加工

9、;锡T再为-7120,属于热加工。9在制造齿轮时,有时采用喷丸法(即将金属丸喷射到零件表面上)使齿面得以强化。试分析强化原因。答:高速金属丸喷射到零件表面上,使工件表面层产生塑性变形,形成一定厚度的加工硬化层,使齿面的强度、硬度升高。第三章 合金的结构与二元状态图2指出下列名词的主要区别:1)置换固溶体与间隙固溶体;答:置换固溶体:溶质原子代替溶剂晶格结点上的一部分原子而组成的固溶体称置换固溶体。间隙固溶体:溶质原子填充在溶剂晶格的间隙中形成的固溶体,即间隙固溶体。2)相组成物与组织组成物;相组成物:合金的基本组成相。组织组成物:合金显微组织中的独立组成部分。4试述固溶强化、加工强化和弥散强化

10、的强化原理,并说明三者的区别.答:固溶强化:溶质原子溶入后,要引起溶剂金属的晶格产生畸变,进而位错运动时受到阻力增大。弥散强化:金属化合物本身有很高的硬度,因此合金中以固溶体为基体再有适量的金属间化合物均匀细小弥散分布时,会提高合金的强度、硬度及耐磨性。这种用金属间化合物来强化合金的方式为弥散强化。加工强化:通过产生塑性变形来增大位错密度,从而增大位错运动阻力,引起塑性变形抗力的增加,提高合金的强度和硬度。区别:固溶强化和弥散强化都是利用合金的组成相来强化合金,固溶强化是通过产生晶格畸变,使位错运动阻力增大来强化合金;弥散强化是利用金属化合物本身的高强度和硬度来强化合金;而加工强化是通过力的作

11、用产生塑性变形,增大位错密度以增大位错运动阻力来强化合金;三者相比,通过固溶强化得到的强度、硬度最低,但塑性、韧性最好,加工强化得到的强度、硬度最高,但塑韧性最差,弥散强化介于两者之间。5固溶体和金属间化合物在结构和性能上有什么主要差别?答:在结构上:固溶体的晶体结构与溶剂的结构相同,而金属间化合物的晶体结构不同于组成它的任一组元,它是以分子式来表示其组成。 在性能上:形成固溶体和金属间化合物都能强化合金,但固溶体的强度、硬度比金属间化合物低,塑性、韧性比金属间化合物好,也就是固溶体有更好的综合机械性能。6. 何谓共晶反应、包晶反应和共析反应?试比较这三种反应的异同点.答:共晶反应:指一定成分的液体合金,在一定温度下,同时结晶出成分和晶格均不相同的两种晶体的反应。 包晶反应:指一定成分的固相与一定成分的液相作用,形成另外一种固相的反应过程。共析反应:由特定成分的单相固态合金,在恒定的温度下,分解成两个新的,具有一定晶体结构的固相的反应。共同点:反应都是在恒温下发生,反应物和产物都是具有特定成分的相,都处于三相平衡状态。不同点:共晶反应是一种液相在恒温下生成两种固相的反应;共析反应是一种固相在恒温下生成两种固相的反应;而包晶反应是一种液相与一种固相在恒温下生成另一种固相的反应。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 教学课件 > 高中课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号