第四节系统信号流图及梅逊公式 主讲人 王辉 信号流图是线性代数方程组结构的一种图形表达 设一组线性方程式如下 信号流图的表示形式 前向通路总增益 前向通路上各支路增益的乘积如 x1 x2 x3 x4总增益abc 回路 通路的起点就是通路的终点 并且与其它节点相交不多于一次的闭合通路叫回路 回路增益 回路中 所有支路增益的乘积 图中有两个回路 一个是x2 x3 x2 其回路增益为be 另一个回是x2 x2 又叫自回路 其增益为d 不接触回路 指相互间没有公共节点的回路 图中无 信号流图与结构图的对应关系信号流图结构图源节点输入信号阱节点输出信号混合节点比较点 引出点支路环节支路增益环节传递函数前向通路回路互不接触回路 二 信流图的性质及运算法则1 每一个节点表示一个变量 并可以把所有输入支路信号迭加再传送到每一个输出支路 2 支路表示了一个信号对另一个信号的函数关系 支路上的箭头方向表示信号的流向 3 混合节点可以通过增加一个增益为1的支路变成为输出节点 且两节点的变量相同 信流图运算法则 三 控制系统的信号流程图 四 梅逊 Mason 公式 特征式 前向通路的条数 第k条前向通路的总增益 所有不同回路的回路增益之和 两两互不接触回路的回路增益乘积之和 互不接触回路中 每次取其中三个的回路增益乘积之和 第k条前向通路的余子式 把与第k条前向通路接触的回路去除 剩余回路构成的子特征式 例3 23利用梅逊公式 求 C s R s 解 画出该系统的信号流程图 该系统中有四个独立的回路 L1 G4H1L2 G2G7H2L3 G6G4G5H2L4 G2G3G4G5H2互不接触的回路有一个L1L2 所以 特征式 1 L1 L2 L3 L4 L1L2该系统的前向通道有三个 P1 G1G2G3G4G5 1 1P2 G1G6G4G5 2 1P3 G1G2G7 3 1 L1 因此 系统的闭环系统传递函数C s R s 为 例3 24 画出信号流图 并利用梅逊公式求取它的传递函数C s R s 信号流图 注意 图中C位于比较点的前面 为了引出C处的信号要用一个传输为1的支路把C D的信号分开 题目中单独回路有L1 L2和L3 互不接触回路有L1L2 即 前向通路只有一条 即所以 例3 25 解 画出信号流图 题目中单独回路有L1 L2和L3 互不接触回路有L1L2 即 前向通路只有一条 即所以 例3 26 已知结构图如下 可在结构图上标出节点 如上图所示 然后画出信号流图如下图所示 系统方块图 解 用小圆圈表示各变量对应的节点 在比较点之后的引出点只需在比较点后设置一个节点便可 也即可以与它前面的比较点共用一个节点 在比较点之前的引出点B 需设置两个节点 分别表示引出点和比较点 注意图中的 解 先在结构图上标出节点 再根据逻辑关系画出信号流图如下 习题3 15 绘出两级串联RC电路的信号流图并用Mason公式计算总传递函数 图中 有一个前向通道 有三个回路 有两个互不接触回路 因为三个回路都与前向通道接触 总传输为 讨论 信号流图中 a点和b点之间的传输为1 是否可以将该两点合并 使得将两个不接触回路变为接触回路 如果可以的话 总传输将不一样 不能合并 因为a b两点的信号值不一样 上图中 ui和ue I1和I a和b可以合并 为什么 求如图所示信号流图的总增益 习题3 16 习题3 17 使用Mason公式计算下述结构图的传递函数 解 在结构图上标出节点 如上 然后画出信号流图 如下 回路有三 分别为 有两个不接触回路 所以 注意 上面讲不变 为什么 是流图特征式 也就是传递函数的特征表达式 对于一个给定的系统 特征表达式总是不变的 可以试着求一下 习题3 18 求如图所示系统的传递函数C s R s 1 不接触回路 L1L2 L2L3 L1L3 L4L3 L1L2L3 1 习题3 19 求如图所示系统的传递函数C s R s 解 有2个前向通路 有5个单独回路 利用Mason求如图所示系统的闭环传递函数 某系统的信号流图 习题3 20 4个单独回路 互不接触 从原理图画系统方块图的方法方块图的简化基本连接方式串联 并联和反馈的简化比较点 分支点的移动信号流图及Mason 总结 。