破解椭圆中最值问题的常见策略精编版

上传人:ahu****ng1 文档编号:133367306 上传时间:2020-05-26 格式:DOC 页数:5 大小:284.50KB
返回 下载 相关 举报
破解椭圆中最值问题的常见策略精编版_第1页
第1页 / 共5页
破解椭圆中最值问题的常见策略精编版_第2页
第2页 / 共5页
破解椭圆中最值问题的常见策略精编版_第3页
第3页 / 共5页
破解椭圆中最值问题的常见策略精编版_第4页
第4页 / 共5页
破解椭圆中最值问题的常见策略精编版_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

《破解椭圆中最值问题的常见策略精编版》由会员分享,可在线阅读,更多相关《破解椭圆中最值问题的常见策略精编版(5页珍藏版)》请在金锄头文库上搜索。

1、最新资料推荐破解椭圆中最值问题的常见策略第一类:求离心率的最值问题 破解策略之一:建立的不等式或方程例1:若为椭圆的长轴两端点,为椭圆上一点,使,求此椭圆离心率的最小值。分析:建立之间的关系是解决离心率最值问题常规思路。此题也就要将角转化为边的思想,但条件又不是与焦点有关,很难使用椭圆的定义。故考虑使用到角公式转化为坐标形式运用椭圆中的取值进行求解离心率的最值。解:不妨设,则,利用到角公式及得:(),又点在椭圆上,故,消去, 化简得又即则,从而转化为关于的高次不等式 解得。故椭圆离心率的最小值为。(或,得:,由,故)(注:本题若是选择或填空可利用数形结合求最值)点评:对于此类最值问题关键是如何

2、建立之间的关系。常用椭圆上的点表示成,并利用椭圆中的取值来求解范围问题或用数形结合进行求解。破解策略之二:利用三角函数的有界性求范围例2:已知椭圆C:两个焦点为,如果曲线C上存在一点Q,使,求椭圆离心率的最小值。分析:根据条件可采用多种方法求解,如例1中所提的方法均可。本题如借用三角函数的有界性求解,也会有不错的效果。解:根据三角形的正弦定理及合分比定理可得:故,故椭圆离心率的最小值为。点评:对于此法求最值问题关键是掌握边角的关系,并利用三角函数的有界性解题,真是柳暗花明又一村。第二类:求点点(点线)的最值问题破解策略之三:建立相关函数并求函数的最值(下面第三类、第四类最值也常用此法)例3:(

3、05年上海)点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,。(1)求点P的坐标;(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于,求椭圆上的点到点M的距离的最小值。分析:解决两点距离的最值问题是给它们建立一种函数关系,因此本题两点距离可转化成二次函数的最值问题进行求解。解:(1)略(2)直线AP的方程是+6=0。 设点M(,0),则M到直线AP的距离是。于是=,又66,解得=2。 设椭圆上的点(,)到点M的距离 ,由于66, 当=时,d取得最小值点评:对于此类最值问题关键是如何将点点之间的最值问题转化成我们常见函数二次函数的最值问题求解。破解策略之

4、四:利用椭圆定义合理转化例4:定长为的线段AB的两个端点分别在椭圆上移动,求AB的中点M到椭圆右准线的最短距离。解:设F为椭圆的右焦点,如图作于A,BB于B,MM于M,则当且仅当AB过焦点F时等号成立。故M到椭圆右准线的最短距离为。点评:是椭圆的通径长,是椭圆焦点弦长的最小值,是AB过焦点的充要条件。通过定义转化避免各种烦琐的运算过程。第五类:求线段之和(或积)的最值问题破解策略之五:利用垂线段小于等于折线段之和。例7:若椭圆内有一点,为右焦点,椭圆上的点使得的值最小,则点的坐标为 A B C D提示:联系到将用第一定义转化成点到相应准线的距离问题,利用垂线段最短的思想容易得到正确答案。选。思

5、考:将题中的2去掉会怎样呢?破解策略之六:利用三角形两边之和大于第三边或三角形两边之差小于第三边例8:如图,在直线上任意取一点,经过点且以椭圆的焦点作椭圆,问当在何处时,所作椭圆的长轴最短,并求出最短长轴为多少?PMyOlF1F2xN分析:要使所作椭圆的长轴最短,当然想到椭圆的定义。基本的解题思路如下:长轴最短三点一直线寻求对称对称变换。在一系列的变化过程中巧妙的运用对称,使我们找到一种简明的解题方法。通过此对称性主要利用解:椭圆的两焦点分别为(3,0)、(3,0),作关于直线的对称点,则直线的方程为由方程组得的坐标(6,3),由中点坐标公式得的坐标(9,6),所以直线的方程。解方程组得点坐标

6、(5,4)。由于, 点评:对于此类最值问题是将所求的最值转化成三角形两边之和大于第三边或两点连线最短、垂线段最短的思想。解析几何与向量综合时可能出现的向量内容:(1) 给出直线的方向向量或;(2)给出与相交,等于已知过的中点;(3)给出,等于已知是的中点;(4)给出,等于已知与的中点三点共线;(5) 给出以下情形之一:;存在实数;若存在实数,等于已知三点共线.(6) 给出,等于已知是的定比分点,为定比,即(7) 给出,等于已知,即是直角,给出,等于已知是钝角, 给出,等于已知是锐角,(8)给出,等于已知是的平分线/(9)在平行四边形中,给出,等于已知是菱形;(10) 在平行四边形中,给出,等于已知是矩形;(11)在中,给出,等于已知是的外心(三角形外接圆的圆心,三角形的外心是三角形三边垂直平分线的交点);(12) 在中,给出,等于已知是的重心(三角形的重心是三角形三条中线的交点);(13)在中,给出,等于已知是的垂心(三角形的垂心是三角形三条高的交点);(14)在中,给出等于已知通过的内心;(15)在中,给出等于已知是的内心(三角形内切圆的圆心,三角形的内心是三角形三条角平分线的交点);(16) 在中,给出,等于已知是中边的中线;5

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 教学课件 > 高中课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号