二值图象的形态学处理

上传人:平*** 文档编号:12027966 上传时间:2017-10-16 格式:DOC 页数:10 大小:1.89MB
返回 下载 相关 举报
二值图象的形态学处理_第1页
第1页 / 共10页
二值图象的形态学处理_第2页
第2页 / 共10页
二值图象的形态学处理_第3页
第3页 / 共10页
二值图象的形态学处理_第4页
第4页 / 共10页
二值图象的形态学处理_第5页
第5页 / 共10页
点击查看更多>>
资源描述

《二值图象的形态学处理》由会员分享,可在线阅读,更多相关《二值图象的形态学处理(10页珍藏版)》请在金锄头文库上搜索。

1、 第四章 二值图象的形态学处理4.1 形态滤波器设计4 1.1 数学形态学滤波特点由于随机噪声的存在,使观测到的图象变质。因此降低或滤除噪声,使图象变得清晰,增强视觉效果是图象处理的一个重要的任务。消除了噪声的图象其特征是:图象的边缘、细的线条和小的图象细节是清晰的、分明的。同时图象元素间区域中的变化是均匀的、光滑的。为了滤除图象中的噪声,需要建立各种形式的滤波器。线性滤波器对图象的 Fourier 频谱的各个频段进行滤波和修改。但是由于噪声和图象边缘具有相同的频率分量,因此常常在滤波噪声的同时又模糊了边界。中值滤波器属于非线性滤波器,由于它具有冲激响应为零和边缘保持特性,近年来发展很快。但在

2、多维基元处理中,尽管它具有良好的窄脉冲干扰抑制能力,但它使附加基元失真和使图象基元结构信息丢失。在数字图象处理领域中,数学形态学主要用于非线性变换,是研究图象分析和机器视觉问题的有力工具 11。数学形态学是主要是基于集合理论来研究图象,它提供了非常有效的非线性滤波技术,该技术只取决于基元的局部形状特征。因此,它在诸如形状分析、模式识别、视觉校验、计算机视觉等方面,要比传统的线性滤波更为有效。它可以局部地修改基元的几何特征,并提供有关基元的几何特征信息。根据不同的基元的形态特征,可以采用不同的数学形态学运算对基元进行处理,这些数学形态与运算都被视为数学形态滤波器。数学形态滤波器在数字图象处理中早

3、己得到广泛的应用,这种非线性的滤波器可以有效地消除噪声而保留原基元的一些必要形状特征。4. 1 .2 数学形态学滤波器设计原理在前两章中,我们对形态滤波器设计的基本原理己经进行了详尽地阐述。数学形态学的运算以腐蚀和膨胀这两种基本运算为基础,引出了其它七种常用的数学形态学运算:腐蚀、膨胀、开运算、闭运算、击中击不中、细化和粗化,它们是全部形态学的基础。形态滤波器是由以集合论为基础的开、闭运算组成,它们具有不模糊图象边界的特性 13。采用形态算子对基元和图象进行处理便构成了数学形杰学滤波器。数学形态学滤波器在图象处理和分析中有着广泛的应用,一般说来,开运算用来消除散点、 “毛刺”和小桥,即对图象进

4、行平滑,闭运算则填平小洞或将两个邻近的区域连接起来。同时,形态学又十分强调图象的几何结构和几何特征,所以形态滤波器在图象滤波、分析处理和压缩编码等领域展示了美好的应用前景。由于形态学的开和闭运算具有消除图象噪声和平滑图象的功能,因此使用形态学开、闭运算建立的形态滤波器逐渐发展起来。形态滤波器是用一个结构元素 B 对初始图象串联地使用开、闭操作。这样图象中比结构元素小的游离的噪声将被滤除。若初始图象为 A,结构元素为 B,则形态滤波器可以这样来构成:OC(A,B)=C(O(A,B),B)或 CO(A,B)=O(C(A,B),B) (4.1)形态滤波器的详尽描述如下:(A B) B) B) B 或

5、(A B) B) B) B (4.2)如果结构元素包括原点(o,0) ,则腐蚀和膨胀满足以下性质 :性质 1A B A A B (4.3)这一性质表明,在 B 包括原点的前提下,腐蚀后的结果只会使 A 的点数减少或者不变,而膨胀则使 A 的点数增加或者不变。利用前一点,可以通过设计适当的结构元素 B,使得腐蚀后得以消除 A 中的微小颗粒,即噪声点。利用后一点,又可以对腐蚀结果再用 B 进行膨胀,以恢复有用信息(细节部分 )。性质 2 对开运算和闭运算,恒有 O(A,B) A C(A,B) (4.4)即开运算使原图形缩小而闭运算使原图形增大。根据上面的讨论以及开闭运算的性质不难证明形态开一闭(O

6、C)和形态闭一开(CO) 滤波器具有如下一些重要性质:(l)平移不变性OC(A+x,B)=OC(A ,B)+x (4.5)CO(A+x,B)=CO(A ,B)+x (4.6)(2)递增性如果 A1 是 A2 的子集,则OC(Al,B) OC(A2,B) (4 .7)CO(Al,B) CO(A2,B) (4.8)(3)幂等性OC(CO(A,B)=CO(OC(A , B) (4 .9)CO(OC(A,B)=OC(CO(A , B) (4 .10)(4)对偶性(OC(A,B) C=CO(A,B) (4 .11)(CO(A,B) C=OC(A,B) (4 .12)形态滤波器的输出不仅取决于变换的形式,

7、而且取决于结构元素的尺寸和形状,一般只有与结构元素的尺寸和形状相匹配的基元才能被保留。目前,人们所采用的形态滤波器主要有形态开运算、闭运算以及它们的级联组合形式,可以分别滤除图象中的背景噪声、前景噪声或者同时抑制图象中的背景和前景噪声。对于传统形态滤波器来讲,它们由于只采用了一种结构元素,滤波器的输出图象中就只能有一种几何信息被保留,而其它几何信息与噪声则被滤除,所以不利于图象几何结构特征的保持。因此对于传统的形态滤波器,至今仍然存在一个尚未得到很好解决的难题,即在去除图象随机噪声的同时又引起图象边缘的模糊,在保留和增强图象边缘的同时又增强了图象的噪声。因此,寻找能够兼容平滑噪声和保留图象边缘

8、及其它有意义特征的图象滤波算法一直是这个领域的热门话题。形态滤波器是将图象经过串联的开、闭运算而将小于或等于结构元素的噪声滤除,在图象上只留下比结构元素大的图象基元。选取结构元素的形状是形态滤波器中非常重要的因素之一。结构元素是数学形态学中形态运算的最基本最重要的概念,它在各种形态变换中起着不可缺少的作用。结构元素没有固定的形状大小,它是在设计形态变换算法的同时,根据目标图象和所需信息的形状特征设计出来。对不同的目标图象,需要设计不同的结构元素和处理算法。结构元素的选择非常灵活多变,结构元素形状大小选择的恰当与否,将直接影响目标图象的处理结果 12。我们根据处理的图象特性可以选择圆形、方形或十

9、字形的结构元素来滤除噪声。由于圆形结构元素具有对称性,对图象做开运算,可以平滑图象的内部边界,打断狭窄的连带,消去小的游离象素簇及图象上的顶值或尖角,所以普遍被采用。结构元素尺寸大小的选择同样非常重要,由于许多的图象细节,小的图象基元的尺寸有时小于结构元素,在滤除噪声的同时也将图象的细节弄丢了。如果选择小的结构元素,则噪声清除不干净,图象得不到改善。但如果选择较大的结构元素,则图象的细节将会丧失。为了解决这个消除噪声、平滑图象与保留图象细节两个方面的矛盾,正确的选择结构元素的尺寸是形态滤波器设计中至关重要的问题。可以这样说,结构元素是数学形态学图象处理算法优于其他图象处理方法的关键所在,但也正

10、是数学形态学进行图象处理的难点所在。4.1.3 多结构元素形态滤波器的设计 结构元素是研究数学形态学的关键概念,它较好地反映了下述合理的观点:所看到的一幅景物既不是完全客观的也不是完全主观的,而是介于二者之间。结构元素正是起着主、客观之间界面的作用,并且它给予主观较大的灵活性,使得可以方便地按照我们的目的选用不同形状和尺寸的结构元素。通常,在所有的图象基元均大于噪声点的情况下,我们可采用传统形态滤波器,用一个直径略大于最大噪声点的圆形结构元素对图象进行开运算,将会消去图象外部背景上的噪声,而用同一结构元素对图象进行闭运算,将消去图象内部(前景) 中的噪声。在实际生活中我们所要处理的图象,极少会

11、碰到结构简单、几何特征明显且易处理的图象,经常碰到图象噪声点的状况均比较复杂,某些图象基元比噪声点要小,采用传统的形态滤波器在滤除噪声的同时,会平滑掉图象中的一些细节。而且由于开、闭运算具有幂等性,所以使用同一结构元素重复进行开、闭运算是没有什么结果的。鉴于此,为了减少图象细节的丢失,为了提高数学形态学滤波的有效性,采用多个结构元素并行处理的数学形态学滤波在图象滤波和特征提取方面获得应用 4,15。我们可试想采用多结构元素来构造一类多结构元素复合形态滤波器。设 A 为输入图象,定义一个结构元素对B=B 1,B 2,.B n。从理论角度讲,多结构元素复合形态滤波器的设计方法同传统形态滤波器的设计

12、方法是相同的,而且具有传统形态滤波器所具有的重要性质:平移不变性、递增性、对偶性以及幂等性。(1)多结构元素复合串行形态滤波器通常我们采用的交变序列滤波器(ASF)是开闭(闭开)运算序列迭代执行。初始 在图象处理与计算机视觉的研究中,数学形态学滤波方法对原始图象具有很好的集合分解性,比高斯滤波方法更符合人类的视觉机理,而且算法更简单便于并行处理。基于多个结构元素并行处理的数学形态学滤波,是根据保护或提取特定图象几何特征的需要,设计一组 4 到 8 个不同方向的线性结构元素,用腐蚀、膨胀、开和闭四种数学形态学的基本形态运算作为子滤波,并将各子滤波的结果统一在某种集合运算或极值运算下来得到最后滤波

13、的效果。如果对于某些比较复杂的图象,我们可构造一种串并行形态滤波器。在每一次串行滤波时,结构元素组采用 4 到 8 个不同方向的结构元素同时进行,而且随着串行滤波次数的增加结构元素组连续不断增大,即在每一次执行串行滤波时实际是执行一次并行滤波。这几种方法在恢复图象、清除噪声和保存图象细节三个个方面,效果比较明显。4.2 边缘的形态检测在计算机视觉和图象处理系统中,许多信息都包含在图象的边缘上,因此边缘检测是图象处理和模式识别的重要课题,它广泛应用于图象分割、目标自动识别、机器人、遥感、医学图象分析等领域。许多常用的边缘检测算子通过图象局部小区域的差分来工作,如Roberts 算子、Sobel

14、算子、Laplace 算子、Prewitt 算子等等。这类边缘检测器或算子对噪声都比较敏感,且常常会在检测边缘的同时加强噪声。形态边缘检测器则主要用到形态梯度的概念,虽也对噪声敏感但不会加强或放大噪声。数学形态学应用于边缘检测的基本思想是对图象用一定的结构元素进行操作后与原图象相减 18。在边缘检测的过程中,还要考虑边缘的连通性,因此,在选取结构元素的同时,应考虑到这一点。两个象素如果在竖直方向或水平方向相邻,则称之为强邻接象素,例如我们常用的菱形结构元素。如果在对角线方向上相邻,则称为弱邻接象素,如果一些象素之间既存在强邻接元素也存在弱邻接象素,则可简单地称其为邻接象素。例如我们常用的方形结

15、构元素。最基本的形态梯度可定义如下:Gradl=(A B)-(A B) (4.13)如果结构元素选取强邻接象素,则 A B 将 A 中的前景区域扩展了一个象素噪声的性能总是受限的,而且用单一的边缘检测算子很难检测出各种几何形状的边缘,在实际处理效果中不甚理想。由于大尺度的结构元素去噪能力强,但所检测的边缘较粗,小尺度的结构元素去噪能力弱,但能检测到好的边缘细节。因此可在大尺度下抑制噪声,可靠地识别边缘;在小尺度下定位,再由粗到细跟踪边缘,得到边缘的位置。4.3 骨架抽取寻找二值图象的细化结构,是图象处理的一个基本问题。骨架便是这样一种细化结构,它是目标的重要拓扑描述,具有非常广泛的应用。4.3.1 骨架抽取的几种模型随着研究的深入,人们提出了多种骨架化算法。基于拓扑细化的算法在上一章己经进行了详尽的阐述,下面讨论其它三种常用算法 19。(l)中轴变换法用骨架描述形态的方法是 Blum 最先提出来的,他使用了中轴(media axis)概念。中轴可以用下面的例子来形象的说明,设想在 t=0 时刻,将目标边界各处同时点燃,火的前沿以匀速向目标蔓延,当前沿相交时火焰熄灭,火焰熄灭点的集合就构成了中轴。通常我们对目标图象的细化处理,就是将图象上的文字、曲线、直线等几何元素的线条

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 其它办公文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号