ftp客户端设计与开发

上传人:xins****2008 文档编号:117185811 上传时间:2019-11-18 格式:DOC 页数:29 大小:343.50KB
返回 下载 相关 举报
ftp客户端设计与开发_第1页
第1页 / 共29页
ftp客户端设计与开发_第2页
第2页 / 共29页
ftp客户端设计与开发_第3页
第3页 / 共29页
ftp客户端设计与开发_第4页
第4页 / 共29页
ftp客户端设计与开发_第5页
第5页 / 共29页
点击查看更多>>
资源描述

《ftp客户端设计与开发》由会员分享,可在线阅读,更多相关《ftp客户端设计与开发(29页珍藏版)》请在金锄头文库上搜索。

1、ecause of the complex nature of cutting operations, it is difficult to establish relationships that quantitatively define the machinability of a material. In manufacturing plants, tool life and surface roughness are generally considered to be the most important factors in machinability. Although not

2、 used much any more, approximate machinability ratings are available in the example below. 20.9.1 Machinability Of Steels Because steels are among the most important engineering materials (as noted in Chapter 5), their machinability has been studied extensively. The machinability of steels has been

3、mainly improved by adding lead and sulfur to obtain so-called free-machining steels. Resulfurized and Rephosphorized steels. Sulfur in steels forms manganese sulfide inclusions (second-phase particles), which act as stress raisers in the primary shear zone. As a result, the chips produced break up e

4、asily and are small; this improves machinability. The size, shape, distribution, and concentration of these inclusions significantly influence machinability. Elements such as tellurium and selenium, which are both chemically similar to sulfur, act as inclusion modifiers in resulfurized steels. Phosp

5、horus in steels has two major effects. It strengthens the ferrite, causing increased hardness. Harder steels result in better chip formation and surface finish. Note that soft steels can be difficult to machine, with built-up edge formation and poor surface finish. The second effect is that increase

6、d hardness causes the formation of short chips instead of continuous stringy ones, thereby improving machinability. Leaded Steels. A high percentage of lead in steels solidifies at the tip of manganese sulfide inclusions. In non- resulfurized grades of steel, lead takes the form of dispersed fine pa

7、rticles. Lead is insoluble in iron, copper, and aluminum and their alloys. Because of its low shear strength, therefore, lead acts as a solid lubricant (Section 32.11) and is smeared over the tool-chip interface during cutting. This behavior has been verified by the presence of high concentrations o

8、f lead on the tool-side face of chips when machining leaded steels. When the temperature is sufficiently high-for instance, at high cutting speeds and feeds (Section 20.6)the lead melts directly in front of the tool, acting as a liquid lubricant. In addition to this effect, lead lowers the shear str

9、ess in the primary shear zone, reducing cutting forces and power consumption. Lead can be used in every grade of steel, such as 10xx, 11xx, 12xx, 41xx, etc. Leaded steels are identified by the letter L between the second and third numerals (for example, 10L45). (Note that in stainless steels, simila

10、r use of the letter L means “low carbon,” a condition that improves their corrosion resistance.) However, because lead is a well-known toxin and a pollutant, there are serious environmental concerns about its use in steels (estimated at 4500 tons of lead consumption every year in the production of s

11、teels). Consequently, there is a continuing trend toward eliminating the use of lead in steels (lead-free steels). Bismuth and tin are now being investigated as possible substitutes for lead in steels. Calcium-Deoxidized Steels. An important development is calcium-deoxidized steels, in which oxide f

12、lakes of calcium silicates (CaSo) are formed. These flakes, in turn, reduce the strength of the secondary shear zone, decreasing tool-chip interface and wear. Temperature is correspondingly reduced. Consequently, these steels produce less crater wear, especially at high cutting speeds. Stainless Ste

13、els. Austenitic (300 series) steels are generally difficult to machine. Chatter can be s problem, necessitating machine tools with high stiffness. However, ferritic stainless steels (also 300 series) have good machinability. Martensitic (400 series) steels are abrasive, tend to form a built-up edge,

14、 and require tool materials with high hot hardness and crater-wear resistance. Precipitation-hardening stainless steels are strong and abrasive, requiring hard and abrasion-resistant tool materials. The Effects of Other Elements in Steels on Machinability. The presence of aluminum and silicon in ste

15、els is always harmful because these elements combine with oxygen to form aluminum oxide and silicates, which are hard and abrasive. These compounds increase tool wear and reduce machinability. It is essential to produce and use clean steels. Carbon and manganese have various effects on the machinabi

16、lity of steels, depending on their composition. Plain low-carbon steels (less than 0.15% C) can produce poor surface finish by forming a built-up edge. Cast steels are more abrasive, although their machinability is similar to that of wrought steels. Tool and die steels are very difficult to machine and usually require annealing prior to machining. Machinability of most steels is improved by cold working, which hardens the material and reduces the tendency for built-up edge formation. Other allo

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 大杂烩/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号