新通信原理实验指导

上传人:marr****208 文档编号:116987387 上传时间:2019-11-18 格式:DOC 页数:236 大小:1.37MB
返回 下载 相关 举报
新通信原理实验指导_第1页
第1页 / 共236页
新通信原理实验指导_第2页
第2页 / 共236页
新通信原理实验指导_第3页
第3页 / 共236页
新通信原理实验指导_第4页
第4页 / 共236页
新通信原理实验指导_第5页
第5页 / 共236页
点击查看更多>>
资源描述

《新通信原理实验指导》由会员分享,可在线阅读,更多相关《新通信原理实验指导(236页珍藏版)》请在金锄头文库上搜索。

1、通信原理实验指导书海南大学信息科学技术学院编2013年3月2目 录实验一 数字基带信号 1实验二 数字调制 8实验三 数字解调 11实验四 时分复用数字基带通信系统 15实验一 数字基带信号一、 实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。 2、掌握AMI、HDB3码的编码规则。 3、掌握从HDB3码信号中提取位同步信号的方法。4、掌握集中插入帧同步码时分复用信号的帧结构特点。5、了解HDB3(AMI)编译码集成电路CD22103。二、 实验内容1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流

2、后的HDB3码。 2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。3、用示波器观察HDB3、AMI译码输出波形三、 基本原理本实验使用数字信源模块和HDB3编译码模块。1、数字信源本模块是整个实验系统的发终端,模块内部只使用+5V电压,其原理方框图如图1-1所示,电原理图如图1-3所示(见附录)。本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图1-2所示。帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。此NRZ信号为集中插入帧同步码时分复用信号,实验电路中数据码用红色发光二极管指示

3、,帧同步码及无定义位用绿色发光二极管指示。发光二极管亮状态表示1码,熄状态表示0码。 图1-1 数字信源方框图图1-2 帧结构本模块有以下测试点及输入输出点: CLK晶振信号测试点 BS-OUT信源位同步信号输出点/测试点(2个) FS信源帧同步信号输出点/测试点 NRZ-OUT(AK)NRZ信号(绝对码)输出点/测试点(4个) 图1-1中各单元与电路板上元器件对应关系如下: 晶振CRY:晶体;U1:反相器7404 分频器U2:计数器74161;U3:计数器74193;U4:计数器40160 并行码产生器 K1、K2、K3:8位手动开关,从左到右依次与帧同步码、数据1、数据2相对应;发光二极管

4、:左起分别与一帧中的24位代码相对应 八选一U5、U6、U7:8位数据选择器4512 三选一U8:8位数据选择器4512 倒相器U20:非门74HC04 抽样U9:D触发器74HC74下面对分频器,八选一及三选一等单元作进一步说明。(1) 分频器 4161进行13分频,输出信号频率为341kHz。74161是一个4位二进制加计数器,预置在3状态。74193完成2、4、8、16运算,输出BS、S1、S2、S3等4个信号。BS为位同步信号,频率为170.5kHz。S1、S2、S3为3个选通信号,频率分别为BS信号频率的1/2、1/4和1/8。74193是一个4位二进制加/减计数器,当CPD= PL

5、 =1、MR=0时,可在Q0、Q1、Q2及Q3端分别输出上述4个信号。40160是一个二一十进制加计数器,预置在7状态,完成3运算,在Q0和Q1端分别输出选通信号S4、S5,这两个信号的频率相等、等于S3信号频率的1/3。分频器输出的S1、S2、S3、S4、S5等5个信号的波形如图1-4(a)和1-4(b)所示。图1-4 分频器输出信号波形(2) 八选一采用8路数据选择器4512,它内含了8路传输数据开关、地址译码器和三态驱动器,其真值表如表1-1所示。U5、U6和U7的地址信号输入端A、B、C并连在一起并分别接S1、S2、S3信号,它们的8个数据信号输入端x0 x7分别K1、K2、K3输出的

6、8个并行信号连接。由表1-1可以分析出U5、U6、U7输出信号都是码速率为170.5KB、以8位为周期的串行信号。(3) 三选一 三选一电路原理同八选一电路原理。S4、S5信号分别输入到U8的地址端A和B,U5、U6、U7输出的3路串行信号分别输入到U8的数据端x3、x0、x1,U8的输出端即是一个码速率为170.5KB的2路时分复用信号,此信号为单极性不归零信号(NRZ)。(4) 倒相与抽样 图1-1中的NRZ信号的脉冲上升沿或下降沿比BS信号的下降沿稍有点迟后。在实验二的数字调制单元中,有一个将绝对码变为相对码的电路,要求输入的绝对码信号的上升沿及下降沿与输入的位同步信号的上升沿对齐,而这

7、两个信号由数字信源提供。倒相与抽样电路就是为了满足这一要求而设计的,它们使NRZ-OUT及BS-OUT信号满足码变换电路的要求。表1-1 4512真值表CBAINHDISZ00000x000100x101000x201100x310000x410100x511000x611100x71001高阻FS信号可用作示波器的外同步信号,以便观察2DPSK等信号。FS信号、NRZ-OUT信号之间的相位关系如图1-5所示,图中NRZ-OUT的无定义位为0,帧同步码为1110010,数据1为11110000,数据2为00001111。FS信号的低电平、高电平分别为4位和8位数字信号时间,其上升沿比NRZ-O

8、UT码第一位起始时间超前一个码元。图1-5 FS、NRZ-OUT波形 2. HDB3编译码 原理框图如图1-6所示。本模块内部使用+5V和-5V电压,其中-5V电压由-12V电源经三端稳压器7905变换得到。 本单元有以下信号测试点: NRZ 译码器输出信号 BS-R 锁相环输出的位同步信号 (AMI)HDB3 编码器输出信号 BPF 带通滤波器输出信号(AMI-D)HDB3-D (AMI)HDB3整流输出信号图1-6 HDB3编译码方框图本模块上的开关K4用于选择码型,K4位于左边(A端)选择AMI码,位于右边(H端)选择HDB3码。图1-6中各单元与电路板上元器件的对应关系如下: HDB3

9、编译码器U10:HDB3编译码集成电路CD22103A 单/双极性变换器U11:模拟开关4052 双/单极性变换器U12:非门74HC04 相加器U17:或门74LS32 带通U13、U14:运放UA741 限幅放大器U15:运放LM318 锁相环U16:集成锁相环CD4046信源部分的分频器、三选一、倒相器、抽样以及(AMI)HDB3编译码专用集成芯片CD22103等电路的功能可以用一片EPLD(EPM7064)芯片完成,说明见附录四。 下面简单介绍AMI、HDB3码编码规律。 AMI码的编码规律是:信息代码1变为带有符号的1码即+1或-1,1的符号交替反转;信息代码0的为0码。AMI码对应

10、的波形是占空比为0.5的双极性归零码,即脉冲宽度与码元宽度(码元周期、码元间隔)TS的关系是=0.5TS。HDB3码的编码规律是:4个连0信息码用取代节000V或B00V代替,当两个相邻V码中间有奇数个信息1码时取代节为000V,有偶数个信息1码(包括0个信息1码)时取代节为B00V,其它的信息0码仍为0码;信息码的1码变为带有符号的1码即+1或-1;HDB3码中1、B的符号符合交替反转原则,而V的符号破坏这种符号交替反转原则,但相邻V码的符号又是交替反转的;HDB3码是占空比为0.5的双极性归零码。 设信息码为0000 0110 0001 0000 0,则NRZ码、AMI码,HDB3码如图1

11、-8所示。分析表明,AMI码及HDB3码的功率谱如图1-9所示,它不含有离散谱fS成份(fS =1/TS,等于位同步信号频率)。在通信的终端需将它们译码为NRZ码才能送给数字终端机或数模转换电路。在做译码时必须提供位同步信号。工程上,一般将AMI或HDB3码数字信号进行整流处理,得到占空比为0.5的单极性归零码(RZ|=0.5TS)。这种信号的功率谱也在图1-9中给出。由于整流后的AMI、HDB3码中含有离散谱fS ,故可用一个窄带滤波器得到频率为fS的正弦波,整形处理后即可得到位同步信号。图1-8 NRZ、AMI、HDB3关系图图1-9 AMI、HDB3、RZ|=0.5TS频谱 本单元用CD

12、22103集成电路进行AMI或HDB3编译码。当它的第3脚(HDB3/ AMI)接+5V时为HDB3编译码器,接地时为AMI编译码器。编码时,需输入NRZ码及位同步信号,它们来自数字信源单元,已在电路板上连好。CD22103编码输出两路并行信号+H-OUT和-H-OUT,它们都是半占空比的正脉冲信号,分别与AMI或HDB3码的正极性信号及负极性信号相对应。这两路信号经单/双极性变换后得到AMI码或HDB3。 双/单极性变换及相加器构成一个整流器。整流后的(AMI)HDB3-D信号含有位同步信号频率离散谱。由于位同步频率比较低,很难将有源带通滤波器的带宽做得很窄,它输出的信号BPF是一个幅度和周

13、期都不恒定的正弦信号。对此信号进行限幅放大处理后得到幅度恒定、周期变化的脉冲信号,但仍不能将此信号作为译码器的位同步信号,需作进一步处理。当锁相环的自然谐振频率足够小时,对输入的电压信号可等效为窄带带通滤波器(关于锁相环的基本原理将在实验三中介绍)。本单元中采用电荷泵锁相环构成一个Q值约为35的的窄带带通滤波器,它输出一个符合译码器要求的位同步信号BS-R。 译码时,需将AMI或HDB3码变换成两路单极性信号分别送到CD22103的第11、第13脚,此任务由双/单变换电路来完成。 当信息代码连0个数太多时,从AMI码中较难于提取稳定的位同步信号,而HDB3中连0个数最多为3,这对提取高质量的位同信号是有利的。这也是HDB3码优于AMI码之处。HDB3码及经过随机化处理的AMI码常被用在PCM一、二、三次群的接口设备中。在实用的HDB3编译码电路中,发端的单/双极性变换器一般由变压器完成;收端的双/单极性变换电路一般由变压器、自动门限控制和整流电路完成,本实验目的是掌握HDB3编码规则,及位同步提取方法,故对极性变换电路作了简化处理,不一定符合实用要求。 CD22103的引脚及内部框图如图1-10所示,详细说明如下:图1-10 CD22103的引脚及内部框图(1)NRZ-IN编码器NRZ信号输入端;(2

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 大杂烩/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号