步进电机原理解析

上传人:最**** 文档编号:116755983 上传时间:2019-11-17 格式:DOC 页数:9 大小:633.01KB
返回 下载 相关 举报
步进电机原理解析_第1页
第1页 / 共9页
步进电机原理解析_第2页
第2页 / 共9页
步进电机原理解析_第3页
第3页 / 共9页
步进电机原理解析_第4页
第4页 / 共9页
步进电机原理解析_第5页
第5页 / 共9页
点击查看更多>>
资源描述

《步进电机原理解析》由会员分享,可在线阅读,更多相关《步进电机原理解析(9页珍藏版)》请在金锄头文库上搜索。

1、步进电机是一种将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。步进电机可以作为一种控制用的特种电机,利用其没有积累误差(精度为100%)的特点,广泛应用于各种开环控制。现在比较常用的步进电机包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)和单相式步进电机等。永磁式步进电机一般为两相,转矩和体积较小,步进角一般为7.5度

2、或15度;反应式步进电机一般为三相,可实现大转矩输出,步进角一般为1.5度,但噪声和振动都很大。反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩。混合式步进电机是指混合了永磁式和反应式的优点。它又分为两相和五相:两相步进角一般为1.8度而五相步进角一般为0.72度。这种步进电机的应用最为广泛,也是本次细分驱动方案所选用的步进电机。步进电机的一些基本参数:电机固有步距角:它表示控制系统每发一个步进脉冲信号,电机所转动的角度。电机出厂时给出了一个步距角的值,如86BYG250A型电机给出的值为0.9/1.8(表示半步工作时为0.9、整步工作时为1.8),这个步距

3、角可以称之为电机固有步距角,它不一定是电机实际工作时的真正步距角,真正的步距角和驱动器有关。步进电机的相数:是指电机内部的线圈组数,目前常用的有二相、三相、四相、五相步进电机。电机相数不同,其步距角也不同,一般二相电机的步距角为0.9/1.8、三相的为0.75/1.5、五相的为0.36/0.72。在没有细分驱动器时,用户主要靠选择不同相数的步进电机来满足自己步距角的要求。如果使用细分驱动器,则相数将变得没有意义,用户只需在驱动器上改变细分数,就可以改变步距角。保持转矩(HOLDINGTORQUE):是指步进电机通电但没有转动时,定子锁住转子的力矩。它是步进电机最重要的参数之一,通常步进电机在低

4、速时的力矩接近保持转矩。由于步进电机的输出力矩随速度的增大而不断衰减,输出功率也随速度的增大而变化,所以保持转矩就成为了衡量步进电机最重要的参数之一。比如,当人们说2N.m的步进电机,在没有特殊说明的情况下是指保持转矩为2N.m的步进电机。DETENTTORQUE:是指步进电机没有通电的情况下,定子锁住转子的力矩。DETENTTORQUE在国内没有统一的翻译方式,容易使大家产生误解;由于反应式步进电机的转子不是永磁材料,所以它没有DETENTTORQUE。步进电机的一些特点:1一般步进电机的精度为步进角的3-5%,且不累积。2步进电机外表允许的最高温度。步进电机温度过高首先会使电机的磁性材料退

5、磁,从而导致力矩下降乃至于失步,因此电机外表允许的最高温度应取决于不同电机磁性材料的退磁点;一般来讲,磁性材料的退磁点都在摄氏130度以上,有的甚至高达摄氏200度以上,所以步进电机外表温度在摄氏80-90度完全正常。3步进电机的力矩会随转速的升高而下降。当步进电机转动时,电机各相绕组的电感将形成一个反向电动势;频率越高,反向电动势越大。在它的作用下,电机随频率(或速度)的增大而相电流减小,从而导致力矩下降。4步进电机低速时可以正常运转,但若高于一定速度就无法启动,并伴有啸叫声。步进电机有一个技术参数:空载启动频率,即步进电机在空载情况下能够正常启动的脉冲频率,如果脉冲频率高于该值,电机不能正

6、常启动,可能发生丢步或堵转。在有负载的情况下,启动频率应更低。如果要使电机达到高速转动,脉冲频率应该有加速过程,即启动频率较低,然后按一定加速度升到所希望的高频(电机转速从低速升到高速)。步进电动机以其显著的特点,在数字化制造时代发挥着重大的用途。伴随着不同的数字化技术的发展以及步进电机本身技术的提高,步进电机将会在更多的领域得到应用。基于MCU和DSP的步进电机控制技术上网时间 : 2005年11月03日打 印 版 推 荐 给 同 仁 发 送 查 询 步进电机已经渗透入我们生活的方方面面,本文介绍了一些重要的步进电机相关技术,为开发人员基本了解步进电机的工作原理提供了足够的信息,同时也介绍了

7、用微控制器或数字信号处理器控制步进电机的方法。HSPACE=12 Title=图1:具有双齿槽和单绕组的定子 步进电机也叫步进器,它利用电磁学原理,将电能转换为机械能,人们早在20世纪20年代就开始使用这种电机。随着嵌入式系统(例如打印机、磁盘驱动器、玩具、雨刷、震动寻呼机、机械手臂和录像机等)的日益流行,步进电机的使用也开始暴增。不论在工业、军事、医疗、汽车还是娱乐业中,只要需要把某件物体从一个位置移动到另一个位置,步进电机就一定能派上用场。步进电机有许多种形状和尺寸,但不论形状和尺寸如何,它们都可以归为两类:可变磁阻步进电机和永磁步进电机。本文重点讨论更为简单也更常用的永磁步进电机。 步进

8、电机的构造 如图1所示,步进电机是由一组缠绕在电机固定部件-定子齿槽上的线圈驱动的。通常情况下,一根绕成圈状的金属丝叫做螺线管,而在电机中,绕在齿上的金属丝则叫做绕组、线圈、或相。如果线圈中电流的流向如图1所示,并且我们从电机顶部向下看齿槽的顶部,那么电流在绕两个齿槽按逆时针流向流动。根据安培定律和右手准则,这样的电流会产生一个北极向上的磁场。HSPACE=12 Title=图2:双相双极电机 现在假设我们构造一个定子上缠绕有两个绕组的电机,内置一个能够绕中心任意转动的永久磁铁,这个可旋转部分叫做转子。图2给出了一种简单的电机,叫做双相双极电机,因为其定子上有两个绕组,而且其转子有两个磁极。如

9、果我们按图2a所示方向给绕组1输送电流,而绕组2中没有电流流过,那么电机转子的南极就会自然地按图中所示,指向定子磁场的北极。 再假设我们切断绕组1中的电流,而按图2b所示方向给绕组2输送电流,那么定子的磁场就会指向左侧,而转子也会随之旋转,与定子磁场方向保持一致。 接着,我们再将绕组2的电流切断,按照图2c的方向给绕组1输送电流,注意:这时绕组1中的电流流向与图2a所示方向相反。于是定子的磁场北极就会指向下,从而导致转子旋转,其南极也指向下方。 然后我们又切断绕组1中的电流,按照图2d所示方向给绕组2输送电流,于是定子磁场又会指向右侧,从而使得转子旋转,其南极也指向右侧。HSPACE=12 T

10、itle=图3:双相6极电机 最后,我们再一次切断绕组2中的电流,并给绕组1输送如图2a所示的电流,这样,转子又会回到原来的位置。 至此,我们对电机绕组完成了一个周期的电激励,电机转子旋转了一整圈。也就是说,电机的电频率等于它转动的机械频率。 如果我们用1秒钟顺序完成了图2所示的这4个步骤,那么电机的电频率就是1Hz。其转子旋转了一周,因而其机械频率也是1Hz。总之,一个双相步进电机的电频率和机械频率之间的关系可以用下式表示: fe=fm*P/2 (1) 其中,fe代表电机的电频率,fm代表其机械频率,而P则代表电机转子的等距磁极数。 从图2中我们还可以看出,每一步操作都会使转子旋转90,也就

11、是说,一个双相步进电机每一步操作造成的旋转度数可由下式表示: 1 step= 180/P (2) 由等式(2)可知,一个双极电机每动作一次可以旋转180/2=90,这与我们在图2中看到的情形正好相符。此外,该等式还表明,电机的磁极数越多,步进精度就越高。常见的是磁极数在12和200个之间的双相步进电机,这些电机的步进精度在15和 0.9之间。HSPACE=12 Title=图4:同时激励电机的两个绕组 图3给出的例子是一个双相、6极步进电机,其中包含3个永久磁铁,因而有6个磁极。第一步,如图3a所示,我们给绕组1施加电压,在定子中产生一个北极指向其顶部的磁场,于是,转子的南极(图3a中红色的“

12、S”一端)转向了该图的上方。接着,在图3b中,我们给绕组2施加电压,定子中产生一个北极指向其左侧的磁场。于是,转子的一个距离最近的南极转向了图的左方,即转子顺时针转动了30。第三步,在图3c中,我们又向绕组1施加一个电压,在定子中产生一个北极指向图下方的磁场,从而又使转子顺时针旋转30到达图3c所示的位置。而在图3d中,我们给绕组2施加电压,在定子中产生一个北极指向定子右侧的磁场,再一次使转子顺时针旋转30,到达图3d所示的位置。最后,我们再向绕组1施加电压,产生一个如图3a所示的北极指向定子上方的磁场,使得转子顺时针旋转30,结束一个电周期。如此可以看出,4步电激励造成了120的机械旋转。也

13、就是说,该电机的电频率是机械频率的3倍,这一结果符合等式(1)。此外,我们从图3和等式(2)也能看出,该电机的转子每一步旋转30。HSPACE=12 Title=图5:可用于驱动电机每个绕组的H桥电路 如果同时向两个绕组输送电流,还能增大电机的扭矩,如图4所示。这时,电机定子的磁场是两个绕组各自产生的磁场的矢量和,虽然这一磁场每一次动作仍然只使电机旋转90,就象图2和图3中一样,但因为我们同时激励两个电机绕组,所以此时的磁场比单独激励一个绕组时更强。由于该磁场是两个垂直场的矢量和,因此它等于单独每个场的21.414倍,从而电机对其负载施加的扭矩也成正比增大。 电机的激励顺序 既然我们知道了一系

14、列激励会使步进电机旋转,接下来就要设计硬件来实现所需的步进序列。一块能让电机动起来的硬件(或结合了硬件和软件的一套设备)就叫做电机驱动器。 从图4中可以看出我们怎样激励双相电机的绕组才能使电机转子旋转,图中,电机内的绕组抽头分别被标为1A、1B、2A和2B。其中,1A和1B是绕组1的两个抽头,2A和2B则是绕组2的两个抽头。 首先,要给脚1B和2B施加一个正电压,并将1A和2A接地。然后,给脚1B和2A施加一个正电压,而将1A和2B接地,这一过程其实取决于导线绕齿槽缠绕的方向,假设导线缠绕的方向与上一节所述相符。依次进行下去,我们就得到了表1中总结的激励顺序,其中,“1”表示正电压,“0”表示

15、接地。 电流在电机绕组中有两种可能的流向,这样的电机就叫做双极电机和双极驱动序列。双极电机通常由一种叫做H桥的电路驱动,图5给出了连接H桥和步进电机两根抽头的电路。H桥通过一个电阻连接到一个电压固定的直流电源(其幅度可根据电机的要求选取),然后,该电路再经过4个开关(分别标为S1、S2、S3和S4)连接到绕组的两根抽头。这一电路的分布看起来有点象一个大写字母H,因此叫做H桥。 从表1中可以看出,要激励该电机,第一步应将抽头2A设为逻辑0,2B设为逻辑1,于是,我们可以闭合开关S1和S4,并断开开关S2和S3。接着,需要将抽头2A设为逻辑1,2B设为逻辑0,于是,我们可以闭合S2、S3,并断开S1和S4。与此类似,第三步我们可以闭合S2、S3并断开S1和S4,第四步则可以闭合S1、S4并断开S2、S3。 对绕组1的激励方法也不外乎如此,使用一对H桥就能产生需要的激励信号序列。表2所示就是激励过程中每一步开关所在的位置。HSPACE=12 Title=图7:单极电机的控制电路 注意,如果R=0,而开关S1和S3又不小心同时闭合,那么流经开关的电流将达到无穷大。这时,不但开关会被烧坏,电源也可能损坏,因此电路中使用了一个非零阻值的电阻。尽管这个电阻会带来一定的功耗,也会降低电

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号