2019年高考数学试卷(理)(天津)(解析卷)

上传人:心*** 文档编号:595280326 上传时间:2024-11-07 格式:DOC 页数:23 大小:1.46MB
返回 下载 相关 举报
2019年高考数学试卷(理)(天津)(解析卷)_第1页
第1页 / 共23页
2019年高考数学试卷(理)(天津)(解析卷)_第2页
第2页 / 共23页
2019年高考数学试卷(理)(天津)(解析卷)_第3页
第3页 / 共23页
2019年高考数学试卷(理)(天津)(解析卷)_第4页
第4页 / 共23页
2019年高考数学试卷(理)(天津)(解析卷)_第5页
第5页 / 共23页
点击查看更多>>
资源描述

《2019年高考数学试卷(理)(天津)(解析卷)》由会员分享,可在线阅读,更多相关《2019年高考数学试卷(理)(天津)(解析卷)(23页珍藏版)》请在金锄头文库上搜索。

1、2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第卷(选择题)和第卷(非选择题)两部分,共150分,考试用时120分钟。第卷1至2页,第卷3至5页。答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。考试结束后,将本试卷和答题卡一并交回。祝各位考生考试顺利!第卷注意事项:1每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。2本卷共8小题,每小题5分,共40分。参考公式:如果事件、互斥,那么如果事件、相互独立,那么圆柱的体积公式,其中

2、表示圆柱的底面面积,表示圆柱的高棱锥的体积公式,其中表示棱锥的底面面积,表示棱锥的高一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的1设集合,则ABCD2设变量满足约束条件则目标函数的最大值为A2B3C5D63设,则“”是“”的A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件4阅读下边的程序框图,运行相应的程序,输出的值为A5B8C24D295已知抛物线的焦点为,准线为,若与双曲线的两条渐近线分别交于点和点,且(为原点),则双曲线的离心率为ABCD6已知,则的大小关系为ABCD7已知函数是奇函数,将的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象

3、对应的函数为若的最小正周期为,且,则ABCD8已知,设函数若关于的不等式在上恒成立,则的取值范围为ABCD2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)第卷注意事项:1用黑色墨水的钢笔或签字笔将答案写在答题卡上。2本卷共12小题,共110分。二填空题:本大题共6小题,每小题5分,共30分9是虚数单位,则的值为_10的展开式中的常数项为_11已知四棱锥的底面是边长为的正方形,侧棱长均为若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_12设,直线和圆(为参数)相切,则的值为_13设,则的最小值为_14在四边形中,点在线段的延长线

4、上,且,则_三解答题:本大题共6小题,共80分解答应写出文字说明,证明过程或演算步骤15(本小题满分13分)在中,内角所对的边分别为已知,()求的值;()求的值16(本小题满分13分)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立()用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望;()设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率17(本小题满分13分)如图,平面,()求证:平面;()求直线与平面所成角的正弦值;(

5、)若二面角的余弦值为,求线段的长18(本小题满分13分)设椭圆的左焦点为,上顶点为已知椭圆的短轴长为4,离心率为()求椭圆的方程;()设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴的交点,点在轴的负半轴上若(为原点),且,求直线的斜率19(本小题满分14分)设是等差数列,是等比数列已知()求和的通项公式;()设数列满足其中(i)求数列的通项公式;(ii)求20(本小题满分14分)设函数为的导函数()求的单调区间;()当时,证明;()设为函数在区间内的零点,其中,证明一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【解析】【分析】先求,再求。【详解】因为,所以.

6、故选D。【点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算2.设【答案】C【解析】【分析】画出可行域,用截距模型求最值。【详解】已知不等式组表示的平面区域如图中的阴影部分。目标函数的几何意义是直线在轴上的截距,故目标函数在点处取得最大值。由,得,所以。故选C。【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域,分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值或范围即:一画,二移,三求3.【答案】B【解析】【

7、分析】分别求出两不等式的解集,根据两解集的包含关系确定.【详解】,即,等价于,故推不出;由能推出。故“”是“”的必要不充分条件。故选B。【点睛】充要条件的三种判断方法:(1)定义法:根据pq,qp进行判断;(2)集合法:根据由p,q成立的对象构成的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断这个方法特别适合以否定形式给出的问题4.【答案】B【解析】【分析】根据程序框图,逐步写出运算结果。【详解】详解:,结束循环,故输出。故选B。【点睛】解决此类型问题时要注意:要明确是当型循环结构,还是直到型循环结构,根据各自的特点执行循

8、环体;要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;要明确循环体终止的条件是什么,会判断什么时候终止循环体5.【答案】D【解析】【分析】只需把用表示出来,即可根据双曲线离心率的定义求得离心率。【详解】的方程为,双曲线的渐近线方程为,故得,所以,所以。故选D。【点睛】双曲线的离心率。6【答案】A【解析】【分析】利用利用等中间值区分各个数值的大小。【详解】,故,所以。故选A。【点睛】利用指数函数、对数函数的单调性时要根据底数与的大小区别对待。7.【答案】A【解析】【分析】只需根据函数性质逐步得出值即可。【详解】为奇函数,可知,由可得;把其图象上各点的横坐标伸长到原

9、来的倍,得,由的最小正周期为可得,由,可得,所以,。故选C。【点睛】在处有定义的奇函数必有。8.【答案】C【解析】【分析】先判断时,在上恒成立;若在上恒成立,转化为在上恒成立。【详解】首先,即,当时,当时,故当时,在上恒成立;若在上恒成立,即在上恒成立,令,则,易知为函数在唯一的极小值点、也是最小值点,故,所以。综上可知,的取值范围是。故选C。【点睛】在上恒成立,等价于;在上恒成立,等价于。第卷二.填空题:本大题共6小题.9.是虚数单位,则的值为_.【答案】【解析】【分析】先化简复数,再利用复数模的定义求所给复数的模。【详解】解法一:。解法二:。【点睛】所以解答与复数概念或运算有关的问题时,需

10、把所给复数化为代数形式,即abi(a,bR)的形式,再根据题意求解10.是展开式中的常数项为_.【答案】【解析】【分析】根据二项展开式的通项公式得出通项,根据方程思想得出的值,再求出其常数项。【详解】,由,得,故所求的常数项为.【点睛】二项式中含有负号时,要把负号与其后面的字母看作一个整体,计算中要特别注意符号。11.已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_.【答案】【解析】【分析】根据棱锥的结构特点,确定所求的圆柱的高和底面半径。【详解】四棱锥的高为,故圆柱高为,圆柱的底面半径为,故其

11、体积为。【点睛】圆柱的底面半径是棱锥底面对角线长度的一半、不是底边棱长的一半。12.设,直线和圆(为参数)相切,则的值为_.【答案】【解析】【分析】根据圆的参数方程确定圆的半径和圆心坐标,再根据直线与圆相切的条件得出满足的方程,解之解得。【详解】圆心坐标为,圆的半径为,所以,即,解得。【点睛】直线与圆的位置关系可以使用判别式法,但一般是根据圆心到直线的距离与圆的半径的大小作出判断。13.设,则的最小值为_.【答案】【解析】【分析】把分子展开化为,再利用基本不等式求最值。【详解】,等号当且仅当,即时成立。故所求的最小值为。【点睛】使用基本不等式求最值时一定要验证等号是否能够成立。14.在四边形中

12、,点在线段的延长线上,且,则_.【答案】【解析】【分析】可利用向量的线性运算,也可以建立坐标系利用向量的坐标运算求解。【详解】解法一:如图,过点作的平行线交于,因为,故四边形为菱形。因为,所以,即.因为,所以.解法二:建立如图所示的直角坐标系,则,。因为,所以,因为,所以,所以直线的斜率为,其方程为,直线的斜率为,其方程为。由得,所以所以。【点睛】平面向量问题有两大类解法:基向量法和坐标法,在便于建立坐标系的问题中使用坐标方法更为方便。三.解答题.解答应写出文字说明,证明过程或演算步骤.15.在中,内角所对边分别为.已知,.()求的值;()求的值.【答案】()()【解析】【分析】()由题意结合

13、正弦定理得到的比例关系,然后利用余弦定理可得的值()利用二倍角公式首先求得的值,然后利用两角和的正弦公式可得的值.【详解】()解:在中,由正弦定理,得,又由,得,即.又因为,得到,.由余弦定理可得.()解:由()可得,从而,故【点睛】本题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理余弦定理等基础知识.考查计算求解能力.16.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.()用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望;()设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率.【答案】()见解析;()【解析】【分析】()由题意可知分布列为二项分布,结合二项分布的公式求得概率可得分布列,然后利用二项分布的期望公式求解数学期望即可;()由题意结合独立事件概率公式计算可得满足题意的概率值.【详解】()因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为,故,从面.所以,随机变量的分布列为:

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 高考

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号