《上海市青浦一中2025届高二上数学期末监测试题含解析》由会员分享,可在线阅读,更多相关《上海市青浦一中2025届高二上数学期末监测试题含解析(19页珍藏版)》请在金锄头文库上搜索。
1、上海市青浦一中2025届高二上数学期末监测试题注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1命题:,否定是()A.,B.,C.,D.,2若,则的值为( )A.或B.或C.1D
2、.13圆与圆的交点为A,B,则线段AB的垂直平分线的方程是A.B.C.D.4设数列的前项和为,且,则()A.B.C.D.5函数图象如图所示,则的解析式可以为A.B.C.D.6已知,则a,b,c的大小关系为()A.B.C.D.7若动点满足方程,则动点P的轨迹方程为()A.B.C.D.8已知四棱柱ABCDA1B1C1D1的底面是边长为2的正方形,侧棱与底面垂直,若点C到平面AB1D1的距离为,则直线与平面所成角的余弦值为()A.B.C.D.9已知函数满足对于恒成立,设则下列不等关系正确是()A.B.C.D.10如图,样本和分别取自两个不同的总体,它们的平均数分别为和,标准差分别为和,则( )A B
3、.C.D.11已知an是以10为首项,3为公差的等差数列,则当an的前n项和Sn,取得最大值时,n =( )A.3B.4C.5D.612若数列的前n项和(nN*),则=( )A.20B.30C.40D.50二、填空题:本题共4小题,每小题5分,共20分。13已知等差数列公差不为0,且,等比数列,则_.14已知双曲线C:的一条渐近线与直线l:平行,则双曲线C的离心率是_15已知正方体的棱长为2,E为线段中点,F为线段BC上动点,则(1)的最小值为_;(2)点F到直线DE距离的最小值为_.16已知,则以AB为直径的圆的方程为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1
4、2分)在平面直角坐标系中,为坐标原点,曲线上点都在轴及其右侧,且曲线上的任一点到轴的距离比它到圆的圆心的距离小1(1)求曲线的方程;(2)已知过点的直线交曲线于点,若,求面积18(12分)年月日,中国向世界庄严宣告,中国脱贫攻坚战取得了全面胜利,现行标准下万农村贫困人口全部脱贫,个贫困县全部摘帽,万个贫困村全部出列,区域性整体贫困得到解决,完成了消除绝对贫困的艰巨任务,困扰中华民族几千年的绝对贫困问题得到了历史性的解决!为了巩固脱贫成果,某农科所实地考察,研究发现某脱贫村适合种植、两种经济作物,可以通过种植这两种经济作物巩固脱贫成果,通过大量考察研究得到如下统计数据:经济作物的亩产量约为公斤,
5、其收购价格处于上涨趋势,最近五年的价格如下表:年份编号年份单价(元/公斤)经济作物的收购价格始终为元/公斤,其亩产量的频率分布直方图如下:(1)若经济作物的单价(单位:元/公斤)与年份编号具有线性相关关系,请求出关于的回归直线方程,并估计年经济作物的单价;(2)用上述频率分布直方图估计经济作物的平均亩产量(每组数据以区间的中点值为代表),若不考虑其他因素,试判断年该村应种植经济作物还是经济作物?并说明理由附:,19(12分)大学生王蕾利用暑假参加社会实践,对机械销售公司月份至月份销售某种机械配件的销售量及销售单价进行了调查,销售单价和销售量之间的一组数据如表所示:月份销售单价(元)销售量(件)
6、(1)根据至月份数据,求出关于的回归直线方程;(2)若剩下的月份的数据为检验数据,并规定由回归直线方程得到的估计数据与检验数据的误差不超过元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?(注:,参考数据:,)20(12分)已知函数.(1)若,求函数在处的切线方程;(2)讨论函数在上的单调性.21(12分)如图长方体中,点为的中点.(1)求证:平面;(2)求证:平面;(3)求二面角的余弦值.22(10分)已知圆过点且与圆外切于点,直线将圆分成弧长之比为的两段圆弧(1)求圆的标准方程;(2)直线的斜率参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小
7、题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据给定条件利用全称量词命题的否定是存在量词命题直接写出作答.【详解】命题:,是全称量词命题,其否定是存在量词命题,所以命题:,的否定是:,.故选:D2、B【解析】求出函数的导数,由方程求解即可.【详解】,解得或,故选:B3、A【解析】圆的圆心为,圆的圆心为,两圆的相交弦的垂直平分线即为直线,其方程为,即;故选A.【点睛】本题考查圆的一般方程、两圆的相交弦问题;处理直线和圆、圆和圆的位置关系时,往往结合平面几何知识(如本题中,求两圆的相交弦的垂直平分线的方程即为经过两圆的圆心的直线方程)可减小运算量.4、C【解析】利用,把代入中,即可
8、求出答案.【详解】当时,.当时,.故选:C.5、A【解析】利用排除法:对于B,令得,即有两个零点,不符合题意;对于C,当时,当且仅当时等号成立,即函数在区间上存在最大值,不符合题意;对于D,的定义域为,不符合题意;本题选择A选项.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势(3)从函数的奇偶性,判断图象的对称性(4)从函数的特征点,排除不合要求的图象利用上述方法排除、筛选选项6、A【解析】根据给定条件构造函数,再探讨其单调性并借助单调性判断作答.【详解】令函数,求导得,当时,于是得在上单
9、调递减,而,则,即,所以,故选:A7、A【解析】根据方程可以利用几何意义得到动点P的轨迹方程是以与为焦点的椭圆方程,从而求出轨迹方程.【详解】由题意得:到与的距离之和为8,且84,故动点P的轨迹方程是以与为焦点的椭圆方程,故,所以,所以椭圆方程为.故选:A8、A【解析】先由等面积法求得的长,再以为坐标原点,建立如图所示的空间直角坐标系,运用线面角的向量求解方法可得答案【详解】如图,连接交于点,过点作于,则平面,则,设,则,则根据三角形面积得,代入解得以为坐标原点,建立如图所示的空间直角坐标系则,设平面的法向量为,则,即,令,得,所以直线与平面所成的角的余弦值为,故选:9、A【解析】由条件可得函
10、数为上的增函数,构造函数,利用函数单调性比较的大小,再根据函数的单调性确定各选项的对错.【详解】设,则, 函数在上为增函数, ,故,所以,C错,令(),则,当时,当时, 函数在区间上为增函数,在区间上为减函数,又, , ,即, ,故,所以,D错,故,所以,A对,故,所以,B错,故选:A.10、B【解析】直接根据图表得到答案.【详解】根据图表:样本数据均小于等于10,样本数据均大于等于10,故;样本数据波动大于样本数据,故.故选:B.11、B【解析】由题可得当时,当时,即得.【详解】an是以10为首项,3为公差的等差数列,故当时,当时,故时,取得最大值故选:B.12、B【解析】由前项和公式直接作
11、差可得.【详解】数列的前n项和(nN*),所以.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设等差数列的公差为,由,等比数列,可得,则的值可求【详解】解:设等差数列的公差为,等比数列,则,得,故答案为:14、【解析】先用两直线平行斜率相等求出,再利用离心率的定义求解即可.【详解】由题意可得双曲线C的一条渐近线方程为,则,即,则,故双曲线C的离心率故答案为:.15、 .; .【解析】建立空间直角坐标系.空一:利用空间两点间距离公式,结合平面两点间距离公式进行求解即可;空二:根据空间向量垂直的性质进行求解即可.【详解】建立如图所示的空间直角坐标系,则有.空一:,代数式表
12、示横轴上一点到点和点的距离之和,如下图所示:设关于横轴的对称点为,当线段与横轴的交点为点时,有最小值,最小值为;空二:设,为垂足,则有,因为,所以,因此,化简得:,当时,即时,此时,有最小值,即最小值为,故答案为:;【点睛】关键点睛:利用空间向量垂直的性质进行求解是解题的关键.16、【解析】求圆心及半径即可.【详解】由已知可得圆心坐标为,半径为,所以圆的方程为:.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由题意直接列或根据抛物线的定义求轨迹方程(2)待定系数法设直线方程,联立直线与抛物线方程,根据抛物线的定义,利用韦达定理解出直线方
13、程,再求面积【小问1详解】解法1:配方法可得圆的方程为,即圆的圆心为,设的坐标为,由已知可得,化简得,曲线的方程为解法2:配方可得圆的方程为,即圆的圆心为,由题意可得上任意一点到直线的距离等于该点到圆心的距离,由抛物线的定义可得知,点的轨迹为以点为焦点的抛物线,所以曲线的方程为【小问2详解】抛物线的焦点为,准线方程为,由,可得的斜率存在,设为,过的直线的方程为,与抛物线的方程联立,可得,设,的横坐标分别为,可得,由抛物线的定义可得,解得,即直线的方程为,可得到直线的距离为,所以的面积为18、(1),元/公斤;(2)应该种植经济作物;理由见解析【解析】(1)利用表格数据求出中心点值,再利用最小二
14、乘法求出回归直线方程,进而利用所求方程进行预测;(2)先利用频率分布直方图的每个小矩形面积之和为1求得值,再利用平均值公式求其平均值,再比较两种作物的亩产量进行求解.【详解】(1),则关于回归直线方程为当时,即估计年经济作物的单价为元/公斤(2)利用频率和为得:,所以经济作物的亩产量的平均值为:,故经济作物亩产值为元,经济作物亩产值为元,应该种植经济作物19、(1)(2)回归直线方程是理想的【解析】(1)根据表格数据求得,利用最小二乘法可求得回归直线方程;(2)令回归直线中的可求得估计数据,对比检验数据即可确定结论.小问1详解】由表格数据可知:,则,关于的回归直线方程为;【小问2详解】令回归直线中的,则,(1)中所得到的回归直线方程是理想的.