《2024年数学选择性必修第2册(配人教版)课件:09 第四章 4.3 4.3.1 第2课时 等比数列的性质及应用》由会员分享,可在线阅读,更多相关《2024年数学选择性必修第2册(配人教版)课件:09 第四章 4.3 4.3.1 第2课时 等比数列的性质及应用(41页珍藏版)》请在金锄头文库上搜索。
1、第,2,课时等比数列的性质及应用,第,2,课时等比数列的性质及应用,第四章数列,4.3,等比数列,4.3.1,等比数列的概念,整体感知,学习目标,1,能根据等比数列的定义推出等比数列的常用性质,理解等比数列与项有关的性质,(,数学运算,),2,能灵活运用等比数列的性质简化运算,解决简单的数列问题,(,数学运算、逻辑推理,),(,教师用书,),首先,我们先来看下面两道小题:,(1),若,a,n,为等比数列,,a,3,2,,,a,7,8,,则,a,4,a,6,_,(2),若,a,n,为等比数列,,a,1,a,2,a,3,2,,,a,4,a,5,a,6,8,,则,a,7,a,8,a,9,_,大家试着
2、做一做,你会发现我们可以用基本量,a,1,,,q,完成计算,但计算过程比较麻烦,等比数列,“,继承,”,了指数函数的特点,计算量大,如果我们掌握一定的技巧,会不会更容易解决问题呢?,讨论交流,问题,1,等比数列有哪些性质?,问题,2,解决等比数列实际应用问题的关键是什么?,自我感知,经过认真的预习,结合对本节课的理解和认知,请画出本节课的知识逻辑体系,探究建构,探究,1,等比数列的性质,探究问题,1,类比等差数列中,a,m,a,n,a,k,a,l,(,m,n,k,l,,,m,,,n,,,k,,,l,N,*,),能否发现等比数列中相似的性质?,提示,类比可得,a,m,a,n,a,k,a,l,,其
3、中,m,n,k,l,,,m,,,n,,,k,,,l,N,*,.,推导过程:,a,m,a,1,q,m,-1,,,a,n,a,1,q,n,-1,,,a,k,a,1,q,k,-1,,,a,l,a,1,q,l,-1,.,所以,a,m,a,n,q,m,n,-2,,,a,k,a,l,q,k,l,-2,,,因为,m,n,k,l,,所以,a,m,a,n,a,k,a,l,.,新知生成,1,推广的等比数列的通项公式,a,n,是等比数列,首项为,a,1,,公比为,q,,则,a,n,a,1,q,n,-1,,,a,n,a,m,q,n,m,(,m,,,n,N,*,),2,等比数列项的运算性质,在等比数列,a,n,中,若,
4、m,n,p,q,(,m,,,n,,,p,,,q,N,*,),,则,a,m,a,n,_,a,p,a,q,(1),特别地,当,m,n,2,k,(,m,,,n,,,k,N,*,),时,,a,m,a,n,_,(2),对有穷等比数列,与首末两项,“,等距离,”,的两项之积等于首末两项的,_,,即,a,2,a,n,1,a,k,a,n,k,1,.,积,3,由等比数列构造,(,衍生,),新数列,(1),在等比数列,a,n,中,每隔,k,项,(,k,N,*,),取出一项,按原来的顺序排列,所得的新数列仍为等比数列,(2),若,a,n,是等比数列,公比为,q,,则数列,都是等比数列,且公比分别是,_,(3),若,
5、a,n,,,b,n,是项数相同的等比数列,公比分别是,p,和,q,,那么,a,n,b,n,与,也都是等比数列,公比分别为,_,和,_,q,,,,,q,2,pq,【教用,微提醒】,(1),下标和相等且左右两侧项数相同时,性质,2,可以推广,如:,m,n,p,x,y,z,,则,a,m,a,n,a,p,a,x,a,y,a,z,.,(2),若,m,,,p,,,n,成等差数列,则,a,m,,,a,p,,,a,n,成等比数列,(3),下标等差时所取项构成等比数列,如,a,2,n,,,a,2,n,1,,,a,3,n,2,,,.,(4),在等比数列,a,n,中,依次每,k,项的和,(,或积,),构成公比为,q
6、,k,(,或,),的等比数列,典例讲评,1,(1),在等比数列,a,n,中,,a,5,8,,,a,7,2,,,a,n,0,,则,a,n,_,(2),在正项等比数列,a,n,中,,a,4,a,8,a,12,8,,则,log,2,a,2,log,2,a,14,_,(3),若,a,n,,,b,n,都是等比数列,满足,a,1,b,1,3,,,a,5,b,5,6,,则,a,9,b,9,_,思路引导,利用等比数列的性质,整体代换求解,(1),(2)2,(3)12,(1),由,a,7,a,5,q,2,得,q,2,.,因为,a,n,0,,所以,q,.,所以,a,n,a,5,q,n,-5,8,.,(2),在正项
7、等比数列,a,n,中,因为,a,4,a,8,a,12,8,,,所以,a,4,a,8,a,12,8,,,所以,a,8,2,,,log,2,a,2,log,2,a,14,log,2,(,a,2,a,14,),log,2,4,2.,(3),易知,a,n,b,n,为等比数列,,则有,(,a,5,b,5,),2,(,a,1,b,1,),(,a,9,b,9,),,,即,6,2,3(,a,9,b,9,),,,a,9,b,9,12.,【教用,备选题】,已知,a,n,为等比数列,(1),若,a,n,满足,a,2,a,4,,求,a,5,;,(2),若,a,n,0,,,a,5,a,7,2,a,6,a,8,a,6,a
8、,10,49,,求,a,6,a,8,;,(3),若,a,n,0,,,a,5,a,6,9,,求,log,3,a,1,log,3,a,2,log,3,a,10,的值,解,(1),在等比数列,a,n,中,,a,2,a,4,,,a,1,a,5,a,2,a,4,,,a,5,.,(2),由等比数列的性质,化简条件得,49,,,即,(,a,6,a,8,),2,49,,,a,n,0,,,a,6,a,8,7.,(3),由等比数列的性质知,a,5,a,6,a,1,a,10,a,2,a,9,a,3,a,8,a,4,a,7,9,,,log,3,a,1,log,3,a,2,log,3,a,10,log,3,(,a,1,
9、a,2,a,10,),log,3,(,a,1,a,10,)(,a,2,a,9,)(,a,3,a,8,)(,a,4,a,7,),(,a,5,a,6,),log,3,9,5,10.,反思领悟,应用等比数列性质的解题策略,(1),等比数列的性质是等比数列的定义、通项公式等基础知识的推广与变形,熟练掌握和灵活应用这些性质可以有效、方便、快捷地解决许多等比数列问题,(2),应用等比数列的性质解题的关键是发现问题中涉及的数列各项的下标之间的关系,充分利用以下公式进行求解:,若,m,n,p,q,(,m,,,n,,,p,,,q,N,*,),,则,a,m,a,n,a,p,a,q,;,若,m,n,2,t,(,m,
10、,,n,,,t,N,*,),,则,a,m,a,n,.,学以致用,1,等比数列,a,n,是递减数列,前,n,项的积为,T,n,,若,T,13,4,T,9,,则,a,8,a,15,_,2,设等比数列,a,n,的公比为,q,,,则由题意,T,13,4,T,9,,,可得,a,1,a,2,a,13,4,a,1,a,2,a,9,,,所以,a,10,a,11,a,12,a,13,4.,由等比数列的性质可得,a,8,a,15,a,10,a,13,a,11,a,12,,所以,a,8,a,15,2.,又因为,a,n,是递减等比数列,所以,q,0,,所以,a,8,a,15,2.,2,探究,2,灵活设元解决等比数列问
11、题,【链接,教材例题】,例,3,数列,a,n,共有,5,项,前三项成等比数列,后三项成等差数列,第,3,项等于,80,,第,2,项与第,4,项的和等于,136,,第,1,项与第,5,项的和等于,132.,求这个数列,分析:,先利用已知条件表示出数列的各项,再进一步根据条件列方程组求解,解,设前三项的公比为,q,,后三项的公差为,d,,则数列的各项依次为,,,80,,,80,d,,,80,2,d,.,于是得,解方程组,得,或,所以这个数列是,20,,,40,,,80,,,96,,,112,,或,180,,,120,,,80,,,16,,,48.,典例讲评,2,有四个数,前三个数成等差数列,后三个
12、数成等比数列,第一个数与第四个数之和为,16,,第二个数与第三个数之和为,12,,求这四个数,解,法一:,设前三个数依次为,a,d,,,a,,,a,d,,则第四个数为,,,由题意,得,解得,或,所以这四个数依次为,0,,,4,,,8,,,16,或,15,,,9,,,3,,,1.,法二:,设后三个数依次为,,,a,,,aq,,,则第一个数为,a,.,由题意,得,解得,或,所以这四个数依次为,0,,,4,,,8,,,16,或,15,,,9,,,3,,,1.,反思领悟,巧设等比数列的方法,(1),三个数成等比数列设为,,,a,,,aq,.,推广到一般:奇数个数成等比数列设为,,,,,a,,,aq,,
13、,aq,2,,,.,(2),四个符号相同的数成等比数列设为,,,aq,,,aq,3,.,推广到一般:偶数个符号相同的数成等比数列设为,,,,,aq,,,aq,3,,,aq,5,,,.,(3),四个数成等比数列,不能确定它们的符号是否相同时,可设为,a,,,aq,,,aq,2,,,aq,3,.,学以致用,2,有四个数成等比数列,将这四个数分别减去,1,,,1,,,4,,,13,成等差数列,则这四个数的和是,_,45,设这四个数分别为,a,,,aq,,,aq,2,,,aq,3,,,则,a,1,,,aq,1,,,aq,2,4,,,aq,3,13,成等差数列,即,整理得,解得,a,3,,,q,2.,因
14、此这四个数分别是,3,,,6,,,12,,,24,,其和为,45.,45,探究,3,等比数列的实际应用,【链接,教材例题】,例,4,用,10 000,元购买某个理财产品一年,(1),若以月利率,0.400%,的复利计息,,12,个月能获得多少利息,(,精确到,0.01,元,)?,(2),若以季度复利计息,存,4,个季度,则当每季度利率为多少时,按季结算的利息不少于,(1),中按月结算的利息,(,精确到,10,-5,)?,分析:,复利是指把前一期的利息与本金之和算作本金,再计算下一期的利息,所以若原始本金为,a,元,每期的利率为,r,,则从第一期开始,各期的本利和,a,(1,r,),,,a,(1
15、,r,),2,,,构成等比数列,解,(1),设这笔钱存,n,个月以后的本利和组成一个数列,a,n,,则,a,n,是等比数列,首项,a,1,10,4,(1,0.400%),,公比,q,1,0.400%,,所以,a,12,10,4,(1,0.400%),12,10 490.702.,所以,,12,个月后的利息为,10 490.702,10,4,490.70(,元,),(2),设季度利率为,r,,这笔钱存,n,个季度以后的本利和组成一个数列,b,n,,则,b,n,也是一个等比数列,首项,b,1,10,4,(1,r,),,公比为,1,r,,于是,b,4,10,4,(1,r,),4,.,因此,以季度复利
16、计息,存,4,个季度后的利息为,10,4,(1,r,),4,10,4,元,解不等式,10,4,(1,r,),4,10,4,490.70,,得,r,1.205%.,所以,当季度利率不小于,1.205%,时,按季结算的利息不少于按月结算的利息,典例讲评,3,某人买了一辆价值,13.5,万元的新车,专家预测这种车每年按,10%,的速度贬值,(1),用一个式子表示,n,(,n,N,*,),年后这辆车的价值;,(2),如果他打算用满,4,年时卖掉这辆车,他大概能得到多少钱?,(,精确到,0.1),解,(1),从第一年起,每辆车的价值,(,万元,),依次设为,a,1,,,a,2,,,a,3,,,,,a,n,,,由题意,得,a,1,13.5,,,a,2,13.5,(1,10%),,,a,3,13.5,(1,10%),2,,,.,由等比数列定义,知数列,a,n,是等比数列,,首项,a,1,13.5,,公比,q,1,10%,0.9,,,a,n,a,1,q,n,-1,13.5,0.9,n,-1,.,n,年后车的价值为,a,n,1,13.5,0.9,n,(,万元,),(2),由,(1),得,a,5,a,1,