《2024年数学选择性必修第2册(配人教版)课件:04 第四章 4.2 4.2.1 第2课时 等差数列的性质及应用》由会员分享,可在线阅读,更多相关《2024年数学选择性必修第2册(配人教版)课件:04 第四章 4.2 4.2.1 第2课时 等差数列的性质及应用(39页珍藏版)》请在金锄头文库上搜索。
1、第,2,课时等差数列的性质及应用,第,2,课时等差数列的性质及应用,第四章数列,4.2,等差数列,4.2.1,等差数列的概念,整体感知,学习目标,1,能根据等差数列的定义推出等差数列的常用性质,理解等差数列与项有关的性质,(,逻辑推理,),2,能灵活运用等差数列的性质简化运算,解决简单的数列问题,(,逻辑推理、数学运算,),3,能在具体的问题情境中,发现数列的等差关系,并解决相应问题,(,数学建模、数学运算,),(,教师用书,),九章算术是我国古代的数学名著,书中有如下问题:,“,今有五人分五钱,令上二人所得与下三人等,问各得几何?,”,其意思为,“,已知甲、乙、丙、丁、戊五人分,5,钱,甲、
2、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得构成等差数列问五人各得多少钱?,”,(,“,钱,”,是古代的一种质量单位,),讨论交流,问题,1,等差数列的子数列是如何定义的?,问题,2,等差数列的子数列有什么样的性质?,问题,3,等差数列的任意两项间有什么样的数量关系?,问题,4,等差数列的,“,下标和,”,性质是什么?,自我感知,经过认真的预习,结合对本节课的理解和认知,请画出本节课的知识逻辑体系,探究建构,探究,1,等差数列的性质,探究问题,已知,a,n,,,a,m,是等差数列,a,n,中的任意两项,你能利用通项公式建立两者之间的关系吗?,提示,由,a,n,a,1,(,n,1
3、),d,,,a,m,a,1,(,m,1),d,,两式相减得,a,n,a,m,(,n,m,),d,,,即,a,n,a,m,(,n,m,),d,.,新知生成,等差数列的性质,(1),a,n,是公差为,d,的等差数列,若正整数,m,,,n,,,p,,,q,满足,m,n,p,q,,则,a,m,a,n,_,特别地,当,m,n,2,k,(,m,,,n,,,k,N,*,),时,,a,m,a,n,2,a,k,.,对有穷等差数列,与首末两项,“,等距离,”,的两项之和等于首末两项的,_,,即,a,1,a,n,a,2,a,n,1,a,k,a,n,k,1,.,(2),从等差数列中,每隔一定的距离抽取一项,组成的数列
4、仍为,_,数列,a,p,a,q,和,等差,(3),若,a,n,是公差为,d,的等差数列,则,c,a,n,(,c,为任一常数,),是公差为,_,的等差数列;,ca,n,(,c,为任一常数,),是公差为,_,的等差数列;,a,n,a,n,k,(,k,为常数,,k,N,*,),是公差为,_,的等差数列,(4),若,a,n,,,b,n,分别是公差为,d,1,,,d,2,的等差数列,则数列,pa,n,qb,n,(,p,,,q,是常数,),是公差为,_,的等差数列,d,cd,2,d,pd,1,qd,2,【教用,微提醒】,(1),a,n,是等差数列,且,a,m,a,n,a,p,a,q,,则,m,n,p,q,
5、不一定成立,如常数列,2,,,2,,,2,,,2,,,中,,a,1,a,2,a,3,a,4,,但,1,2,3,4.,(2),推广:若,m,n,p,x,y,z,,则,a,m,a,n,a,p,a,x,a,y,a,z,,该性质要求下标的和相等,且左右两侧项数相同,【链接,教材例题】,例,5,已知数列,a,n,是等差数列,,p,,,q,,,s,,,t,N,*,,且,p,q,s,t,.,求证,a,p,a,q,a,s,a,t,.,分析:,只要根据等差数列的定义写出,a,p,,,a,q,,,a,s,,,a,t,,再利用已知条件即可得证,证明,设数列,a,n,的公差为,d,,则,a,p,a,1,(,p,1),
6、d,,,a,q,a,1,(,q,1),d,,,a,s,a,1,(,s,1),d,,,a,t,a,1,(,t,1),d,.,所以,a,p,a,q,2,a,1,(,p,q,2),d,,,a,s,a,t,2,a,1,(,s,t,2),d,.,因为,p,q,s,t,,所以,a,p,a,q,a,s,a,t,.,典例讲评,1,(1),已知等差数列,a,n,,,a,5,10,,,a,15,25,,求,a,25,的值,(2),已知等差数列,a,n,,,a,3,a,4,a,5,a,6,a,7,70,,求,a,1,a,9,的值,(3),已知数列,a,n,,,b,n,都是等差数列,且,a,1,2,,,b,1,3,,
7、,a,7,b,7,17,,求,a,19,b,19,的值,解,(1),法一:,设,a,n,的公差为,d,,,则,解得,故,a,25,a,1,24,d,4,24,40.,法二:,因为,5,25,2,15,,所以在等差数列,a,n,中有,a,5,a,25,2,a,15,,从而,a,25,2,a,15,a,5,2,25,10,40.,法三:,因为,5,,,15,,,25,成等差数列,所以,a,5,,,a,15,,,a,25,也成等差数列,因此,a,25,a,15,a,15,a,5,,即,a,25,25,25,10,,解得,a,25,40.,(2),由等差数列的性质,得,a,3,a,7,a,4,a,6,
8、2,a,5,a,1,a,9,,所以,a,3,a,4,a,5,a,6,a,7,5,a,5,70,,于是,a,5,14,,故,a,1,a,9,2,a,5,28.,(3),令,c,n,a,n,b,n,,因为,a,n,,,b,n,都是等差数列,所以,c,n,也是等差数列,设其公差为,d,,由已知,得,c,1,a,1,b,1,5,,,c,7,17,,则,5,6,d,17,,解得,d,2,,故,a,19,b,19,c,19,5,18,2,41.,母题探究,本例,(1),中条件变为,“,已知等差数列,a,n,中,,a,3,a,6,8,”,,求,5,a,4,a,7,的值,解,法一:,设等差数列,a,n,的公差
9、为,d,,,则,a,3,a,6,2,a,1,7,d,8,,,所以,5,a,4,a,7,6,a,1,21,d,3(2,a,1,7,d,),24,.,法二:,在等差数列中,若,m,n,p,q,,,则,a,m,a,n,a,p,a,q,,,a,2,a,6,a,3,a,5,2,a,4,,,5,a,4,a,7,a,2,a,3,a,4,a,5,a,6,a,7,.,又,a,2,a,7,a,3,a,6,a,4,a,5,,,5,a,4,a,7,3(,a,3,a,6,),3,8,24,.,反思领悟,(1),灵活利用等差数列的性质,可以减少运算令,m,1,,,a,n,a,m,(,n,m,),d,即变为,a,n,a,1
10、,(,n,1),d,,可以减少记忆负担,(2),等差数列运算的两种常用思路,基本量法:根据已知条件,列出关于,a,1,,,d,的方程,(,组,),,确定,a,1,,,d,,然后求其他量,巧用性质法:观察等差数列中项的序号,若满足,m,n,p,q,2,r,(,m,,,n,,,p,,,q,,,r,N,*,),,则,a,m,a,n,a,p,a,q,2,a,r,.,学以致用,1,(1),已知等差数列,a,n,中,,a,1,a,4,a,7,39,,,a,2,a,5,a,8,33,,则,a,3,a,6,a,9,_,(2),已知两个等差数列,a,n,:,5,,,8,,,11,,,,,b,n,:,3,,,7,
11、,,11,,,,它们的公共项组成数列,c,n,,则数列,c,n,的通项公式,c,n,_,;若数列,a,n,和,b,n,的项数均为,100,,则,c,n,的项数是,_,(1)27,(2)12,n,1,25,(1),法一,:由性质可知,数列,a,1,a,4,a,7,,,a,2,a,5,a,8,,,a,3,a,6,a,9,是等差数列,,所以,2(,a,2,a,5,a,8,),(,a,1,a,4,a,7,),(,a,3,a,6,a,9,),,则,a,3,a,6,a,9,2,33,39,27.,27,12,n,1,25,法二:,设等差数列,a,n,的公差为,d,,,则,(,a,2,a,5,a,8,),(
12、,a,1,a,4,a,7,),(,a,2,a,1,),(,a,5,a,4,),(,a,8,a,7,),3,d,6,,,解得,d,2,,,所以,a,3,a,6,a,9,a,2,d,a,5,d,a,8,d,27.,(2),由于数列,a,n,和,b,n,都是等差数列,,所以,c,n,也是等差数列,且公差为,3,4,12,,,又,c,1,11,,故,c,n,11,12(,n,1),12,n,1.,又,a,100,302,,,b,100,399,,,所以,解得,1,n,25.,故,c,n,的项数为,25.,探究,2,等差数列中项的设法,典例讲评,2,(1),三个数成等差数列,其和为,9,,前两项之积为后
13、一项的,6,倍,求这三个数;,(2),四个数成递增等差数列,中间两项的和为,2,,首末两项的积为,8,,求这四个数,解,(1),设这三个数依次为,a,d,,,a,,,a,d,,,则,解得,所以这三个数为,4,,,3,,,2.,(2),设这四个数依次为,a,3,d,,,a,d,,,a,d,,,a,3,d,(,公差为,2,d,),,,依题意得,2,a,2,且,(,a,3,d,)(,a,3,d,),8,,,即,a,1,,,a,2,9,d,2,8,,,所以,d,2,1,,所以,d,1,或,d,1.,又四个数成递增等差数列,所以,d,0,,,所以,d,1,,故所求的四个数为,2,,,0,,,2,,,4.
14、,反思领悟,等差数列的设项方法和技巧,(1),当已知条件中出现与首项、公差有关的内容时,可直接设首项为,a,1,,公差为,d,,利用已知条件建立方程,(,组,),求出,a,1,和,d,,即可确定此等差数列的通项公式;,(2),当已知数列有,3,项时,可设为,a,d,,,a,,,a,d,,此时公差为,d,.,若有,5,项、,7,项、,,可同理设出;,(3),当已知数列有,4,项时,可设为,a,3,d,,,a,d,,,a,d,,,a,3,d,,此时公差为,2,d,.,若有,6,项、,8,项、,,可同理设出,学以致用,2,已知成等差数列的四个数的和为,26,,第二个数与第三个数的积为,40,,求这四
15、个数,解,设这四个数依次是,a,3,d,,,a,d,,,a,d,,,a,3,d,(,a,,,d,R,),可得,解得,或,所以这四个数为,2,,,5,,,8,,,11,或,11,,,8,,,5,,,2.,探究,3,等差数列的实际应用,【链接,教材例题】,例,3,某公司购置了一台价值为,220,万元的设备,随着设备在使用过程中老化,其价值会逐年减少经验表明,每经过一年其价值就会减少,d,万元,(,d,为正常数,),已知这台设备的安全使用年限为,10,年,第,11,年期间,它的价值将低于购进价值的,5%,,设备需在这年年初报废请确定,d,的取值范围,分析:,这台设备使用满,n,年时的价值构成一个数列
16、,a,n,由题意可知,使用满,10,年时,这台设备的价值应不小于,(220,5%,)11,万元;而第,11,年年底,这台设备的价值应小于,11,万元可以利用,a,n,的通项公式列不等式求解,解,设使用满,n,年时,这台设备的价值为,a,n,万元,则可得数列,a,n,由已知条件,得,a,n,a,n,1,d,(,n,2),由于,d,是与,n,无关的常数,所以数列,a,n,是一个公差为,d,的等差数列因为购进设备的价值为,220,万元,所以,a,1,220,d,,于是,a,n,a,1,(,n,1)(,d,),220,nd,.,根据题意,得,即,解这个不等式组,得,19,d,20.9.,所以,,d,的取值范围为,19,d,20.9.,典例讲评,3,周髀算经是中国最古老的天文学和数学著作,书中提到:从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列若冬至、立春、春分的日影子长的和是,37.5,尺,芒种的日影子长为,4.5,尺,则立夏的日影子长为,(,),A,15.5,尺,B,12.5,尺,C,9.5,尺,D,6.5,尺,D,设该等差