重庆市未来工厂建设指南

上传人:尘** 文档编号:593796890 上传时间:2024-10-09 格式:DOCX 页数:7 大小:114.01KB
返回 下载 相关 举报
重庆市未来工厂建设指南_第1页
第1页 / 共7页
重庆市未来工厂建设指南_第2页
第2页 / 共7页
重庆市未来工厂建设指南_第3页
第3页 / 共7页
重庆市未来工厂建设指南_第4页
第4页 / 共7页
重庆市未来工厂建设指南_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《重庆市未来工厂建设指南》由会员分享,可在线阅读,更多相关《重庆市未来工厂建设指南(7页珍藏版)》请在金锄头文库上搜索。

1、重庆市未来工厂建设指南(1.0)未来工厂是围绕未来发展战略和产业变革趋势,全面应用人工智能等新一代信息技术,推动产业链供应链深度互联和协同响应,破除消费、生产、服务边界壁垒,以模型和数据驱动企业生产方式、组织形态和商业模式变革,持续追求价值链与核心竞争力提升的现代化新型组织。为贯彻落实深入推进新时代新征程新重庆制造业高质量发展行动方案(20232027年)和重庆市制造业数字化转型行动计划(20232027年),坚定智能制造主攻方向,加快未来工厂建设,引领智能制造创新突破,推进我市制造业数字化转型,全面助力新型工业化发展,特制定本指南。一、建设原则(一)坚持政府引导、市场主导。发挥政府在规划引导

2、、标准制定、服务供给等方面的引导作用,强化企业在未来工厂建设中的主体地位。充分尊重企业数字化转型发展规律,合理匹配服务资源,推动企业加快数字化转型。(二)坚持创新引领、技术驱动。以新一代信息技术与先进制造业技术融合为主线,打造人工智能赋能数字化转型新引擎,开展全环节典型场景应用创新,开创数字技术引领企业发展新局面,塑造重庆制造业企业未来竞争新优势。(三)坚持典型示范、梯度培育。深入实施制造业数字化转型方案,以示范为引领,推动产业链供应链深度互联和协同响应,带动上下游企业数字化转型升级。建立未来工厂梯度培育体系和分级示范体系,引导企业科学规划建设路径和建设模式,打造立足当前、面向未来的制造组织新

3、形态。二、建设体系图1 未来工厂体系构架图重庆市未来工厂建设体系简称“12343”体系,其中,“1”是指以产业大脑能力中心为核心,以智能制造系统集成服务商为支撑,以新一代信息技术和先进制造技术为构成要素的未来工厂建设赋能体系;“2”是指软硬件基础支撑和数据应用支撑2层建设未来工厂的基础支撑;第一个“3”是指智能工厂、新模式新业态和双化协同工厂3大典型场景应用,是培育建设未来工厂的必要路径;“4”是指数字化组织体系、全过程质量管理体系、信息安全防护体系和标准应用体系4大未来工厂建设保障体系;第二个“3”是指按照“单体示范、链式联动、跨界协同”路径,确定的“AI领航工厂、链网平台工厂、超级无界工厂

4、”三类未来工厂分级建设形态。(一)赋能体系建设。1.产业大脑能力中心。产业大脑能力中心是由市级部门统建统管,围绕企业关键业务环节共性需求,汇聚标杆案例、服务商、优秀软硬件产品、人才培训等各方资源,构建诊断评估、解决方案、供需对接、产品商城、人才培训“一站式”的数字化转型服务体系。产业大脑能力中心为未来工厂建设提供研发设计、生产制造、仓储物流、云网安全、工业终端、行业大模型应用等各类数字化转型产品和服务,并汇聚产业大脑行业监测数据为未来工厂企业大脑建设提供决策数据支撑。未来工厂沉淀组件能力、标杆案例、转型成效等数字化转型关键数据,与产业大脑能力中心实现数据交互,提升能力中心赋能水平。2.新一代信

5、息技术。未来工厂应结合具体的场景建设需求,多元化探索利用人工智能、数字孪生、AR/VR、5G、大数据等新一代信息技术开展应用赋能。(1)人工智能技术。围绕研发、设计、生产、检测、服务、决策等环节,采用计算机视觉、自然语言处理、机器学习、深度学习、大模型等人工智能技术,建设生产过程控制、故障诊断和设备预测性维护、对象与质量检测、物料库存管理、生产效益分析等场景,积极探索复杂工业系统的多维智能感知、智能自主控制等技术路径,提升企业生产运营的数智化水平。(2)数字孪生技术。采用数字孪生、工业元宇宙等技术,通过建立仿真模型、数据模型、逻辑模型和可视化模型,在信息空间构建一个与物理设备单元/产线/工厂高

6、度相似、内部逻辑一致、运行数据契合的虚拟设备单元/产线/工厂,打造研发模拟仿真、生产制造精细化管控、设备远程监控等场景,实现信息流、物料流和控制流的有序流转,以及产品设计、物理设备和生产过程的实时可视化展示和迭代优化。(3)AR/VR技术。应用传感器、图像处理和模式识别、网络传输等技术搭建虚拟仿真模型,以推动工厂数字化设计、智能车间布局、设备实时监控等具体场景为目标,实现产品设计、物理设备和生产过程的实时可视化。利用虚拟现实技术、仿真技术构造虚拟环境以及产品虚拟模型,探索智能装配、产品维修等具体场景。采用虚实融合技术,将虚拟车间与物理车间进行双向映射,物理车间与虚拟车间信息实时交互,推动车间不

7、断进行迭代优化。(4)未来通信技术。采用5G等工业网络组网技术,建立数据隔离、质量保证的基础通信网络,实现大带宽、低时延、安全可靠的数据传输,满足在生产运行和管理过程中的通信要求。构建虚拟专网、混合专网+MEC和独立专网+MEC等5G企业专网,建设协同研发设计、远程设备操控、柔性生产制造、机器视觉质检等应用场景。探索卫星互联网、6G等技术的创新应用。3.先进制造技术。未来工厂应以数字化设计、先进工艺、智能装备等先进制造技术为支撑开展技术改造,进一步提升先进制造能力。(1)设计技术。应广泛应用创成式设计、虚拟设计等数字化设计技术,实现产品研发全生命周期的网络协同研发和设计验证优化。(2)工艺(加

8、工)技术。应创新应用超精密、高速加工、增材制造、微纳制造、再制造等先进工艺(加工)技术,实现制造过程的优化与协同。(3)装备技术。应深度融合应用数控装备、工业机器人、工业视频等智能制造装备,结合工业互联网、云计算、大数据等新一代信息技术,提升制造过程的柔性化和智能化。4.系统集成服务商。由市区主管部门遴选培育一批深耕细分领域、专业化程度高、创新能力强的转型服务商和综合水平高、系统集成能力强、行业影响力大的龙头供应商,完善工业互联网和智能制造服务商资源池和供应商分类分级体系,为未来工厂梯队培育和建设提供服务能力支撑。(二)基础支撑建设。1.软硬件基础支撑。未来工厂应建设面向当前需求、兼顾未来发展

9、的软硬件支撑体系,实现全流程数字化。(1)硬件装备支撑。企业应围绕产品的生产制造、检验检测、仓储物流等环节,应用数控机床、工业机器人、智能传感与控制、智能检测与装配、智能仓储与物流等智能制造装备,加强“哑设备”、单机系统等数字化改造,提升异构工业网络、不同工业设备之间的跨协议互通,持续推进装备数字化、智能化升级,构建未来工厂硬件装备基础。(2)软件信息支撑。企业应全面应用工业软件,布局通信网络,建设算力设施,提升数字化支撑能力,构建未来工厂软件信息基础。工业软件。深化应用计算机辅助技术(CAX)、制造执行系统(MES)、供应链管理(SCM)、质量信息系统/质量管理系统(QIS/QMS)、产品生

10、命周期管理/产品数据管理(PLM/PDM)、仓储管理系统(WMS)、客户关系管理(CRM)等工业软件及轻量化工业APP,并实现系统间信息集成应用。通信网络。应利用现场总线、工业以太网、工业无线等网络技术,建立车间级/工厂级工业通信网络,强化生产设备、传感器、控制系统与管理系统等的互联互通。应结合数据采集与感知、远程控制、边缘计算等特定场景需求,综合部署5G、千兆光纤、时间敏感网络(TSN)、软件定义网络(SDN)、IPV6等新一代通信网络基础设施,加快ITOT网络融合。算力设施。应面向研发设计、生产制造、仓储物流、营销服务等场景数据实时计算要求,部署工业边缘数据中心,联动重庆区域算力基础设施,

11、推动算力赋能智能检测、故障分析、人机协作等技术迭代,不断提升不同工业场景业务处理能力。2.数据应用支撑。企业应通过工业互联网平台采集汇聚工业设备、工艺流程、生产制造、经营管理等私有数据资源,依托产业大脑传递的外部公共数据、行业数据等数据资源,应用大数据技术开展数据分析,打造具备自决策、自适应能力的企业大脑,构建未来工厂数据应用基础。(1)工业互联网平台。应建设涵盖多源异构数据采集、海量数据处理、行业机理模型沉淀、工业软件应用开发等为一体的企业级工业互联网平台,通过传感器、网关、边缘计算等技术手段,完成工业协议转化,实现企业内工业设备的广泛连接,开展企业设备数据、工艺数据和管理系统数据归集,构建

12、资源调度、监测预警、知识图谱、模型组件等数字化能力。(2)企业大脑。应建设标准化数据底座的集成平台,提供数据开发工具开展数据分析和深度加工,对企业内外部的实时/历史、同构/异构等工业数据进行集成清洗、存储管理和分析挖掘,通过汇聚企业全域全量数据实施科学辅助智能决策及资源优化协同配置,实现全流程的数据治理。依托工业互联网平台提供垂直大模型、知识图谱和通用工具组件的敏捷开发和部署,实现知识经验的模型化、组件化,以人工智能赋能研发设计、生产调度、运营决策、销售服务等企业生产经营全流程。(三)场景能力建设。1.建设智能工厂。智能工厂是未来工厂建设的核心场景,企业通过利用工业互联网技术强化信息系统建设和

13、数据集成应用,实现设计数字化、生产智能化、管理精益化,对多个数字化车间进行集成与管控,建设高效、高质、高端的产品生产工厂。(1)设计数字化。设计数字化是指企业在产品设计、工艺设计和试验设计等环节中应用数字化技术,建设协同、虚拟、绿色、并行和动态等数字化设计平台,采用自上而下、模块化、标准化、虚拟仿真、面向全生命周期的并行/协同,基于大数据分析/知识工程等设计方法,通过设计的数字化、网络化和智能化,降低开发成本,加快开发流程,缩短上市周期,实现最佳设计目标和企业间协作的设计。工厂规划设计。企业利用三维设计与仿真软件等,对工厂设备、产线、仓储物流等生产设施进行整体规划、设计和仿真优化,并通过数字建

14、模、仿真分析、数字孪生等技术实现工厂全流程设计、仿真和优化。产品设计。建立产品设计标准库、组件库、知识库,应用三维设计仿真软件(CAD/CAE)、AR/MR/VR等产品设计工具,开展产品的高效设计与仿真测试,探索创成式设计、AIGC辅助设计等新技术应用。充分考虑产品制造、使用、服务、维修、退役等后续各阶段信息交互需求,建立产品数据管理系统(PDM),实现产品设计、工艺数据的全生命周期和集成管理。工艺设计。建立工艺机理模型库、工艺知识库、产品数据管理库、工业设计云平台,运用CAPP等工具,集成三维建模和仿真验证等技术进行基于模型的工艺设计,实现工艺的优化与协同设计。(2)生产智能化。生产智能化是

15、指企业应用新一代信息技术,围绕计划调度、生产执行、质量管控、物流配送和设备运维等生产制造过程的自感知、自优化、自决策和自执行的目标,满足生产设备、产线、车间及工厂的智能化、柔性化和敏捷化生产需要。生产作业。企业应建设制造执行系统/制造运营系统(MES/MOM)等信息化系统,实现作业文件自动下发与执行、设计与制造协同、制造资源动态组织、生产过程管理与优化、生产过程可视化监控与反馈、生产绩效分析和异常管理,提高生产过程的智能化和可控性。计划调度。企业应建设先进排产系统(APS)等生产计划排产系统,采用先进排产调度算法模型、生产运行实时模型等技术,基于市场需求、工厂采购、安全库存、仓储配送、生产能力

16、等约束条件进行科学排产,并实现对突发事件的自动预警、辅助决策和优化调度。质量管控。企业应建设质量管理系统或实验室管理系统(LIMS)等系统,采用智能传感、图像识别等新一代信息技术手段,构建质量模型库、知识库、规则库、约束库、规则库,开展质量数据实时采集、在线质量监测和预警、质量档案及质量追溯、质量风险预测、质量分析与改进等现代化质量活动。仓储物流。企业应建设仓储管理与调度系统(WMS),集成物流小车(AGV)、分拣机器人、包装机器人等物流设备,综合应用自动分拣、射频识别、声控技术等先进技术,对物品的进出库、存储、分拣、包装、配送及其信息进行有效的计划、执行和控制,确保物料仓储配送准确高效和运输精益化管控。可通过与供应链上下游的信息共享,根据市场需求、供应信息和仓储状态,动态优化企业仓储物流。设备运维。企业应建设设备运维平台,完善设备故障知识库,通过设备信息管理系统,融合智能传感

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > IT计算机/网络 > 管理信息系统

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号