二十一章节PPT课件

上传人:工**** 文档编号:592723250 上传时间:2024-09-22 格式:PPT 页数:40 大小:921.50KB
返回 下载 相关 举报
二十一章节PPT课件_第1页
第1页 / 共40页
二十一章节PPT课件_第2页
第2页 / 共40页
二十一章节PPT课件_第3页
第3页 / 共40页
二十一章节PPT课件_第4页
第4页 / 共40页
二十一章节PPT课件_第5页
第5页 / 共40页
点击查看更多>>
资源描述

《二十一章节PPT课件》由会员分享,可在线阅读,更多相关《二十一章节PPT课件(40页珍藏版)》请在金锄头文库上搜索。

1、INVESTMENTS | BODIE, KANE, MARCUSCopyright 2011 by The McGraw-Hill Companies, Inc. All rights reserved.McGraw-Hill/Irwin第二十一章期权定价INVESTMENTS | BODIE, KANE, MARCUS21-2内在价值- 立即执行期权所带来的收益。看涨期权: 股票价格- 执行价格看跌期权: 执行期权- 股票价格时间价值- 期权实际价格与内在价值的差。期权定价INVESTMENTS | BODIE, KANE, MARCUS21-3图21.1 到期前看涨期权的价值INVEST

2、MENTS | BODIE, KANE, MARCUS21-4表 21.1 看涨期权价值的决定因素INVESTMENTS | BODIE, KANE, MARCUS21-5看涨期权价值的限制看涨期权的价值不能为负。期权的收益最差是0,最好是为较高的正值。看涨期权的价值不可能高于股票价格。看涨期权的价值必须高于杠杆化股票头寸的收益。下限= 修正的内在价值:C S0 - PV (X) - PV (D)(D=股利)INVESTMENTS | BODIE, KANE, MARCUS21-6图21.2 看涨期权价值所处的可能范围INVESTMENTS | BODIE, KANE, MARCUS21-7图

3、21.3 看涨期权价值与股票现值之间的函数关系INVESTMENTS | BODIE, KANE, MARCUS21-8看涨期权的提前执行只要在股票到期日之前执行期权无法带来收益,那么提前行使美式期权就毫无价值。这样,美式期权与欧式期权是等价的。看涨期权的价值随着股价上涨而增加。由于股价可以无限制的上涨,对看涨期权而言,“活着比死更有价值”。INVESTMENTS | BODIE, KANE, MARCUS21-9看跌期权的提前执行当其他条件相同时,美式看跌期权的价格高于欧式看跌期权。提前行权可能会有用,因为:股票价值不可能跌到0以下。一旦公司破产,由于货币的时间价值,立即执行期权仍是最优选择

4、。INVESTMENTS | BODIE, KANE, MARCUS21-10图21.4 看跌期权价值与目前股票价格的函数INVESTMENTS | BODIE, KANE, MARCUS21-1110012090股票价格股票价格C100看涨期权价值看涨期权价值 X = 110二项式期权定价的例子INVESTMENTS | BODIE, KANE, MARCUS21-12构建资产组合:构建资产组合:购买股票购买股票$100借款借款 $81.82 (10% 的利率的利率)净支出净支出收益:收益:股票价值股票价值 90 120偿还贷款偿还贷款 - 90 - 90净收益净收益 0 30300资产组合

5、的收益正好资产组合的收益正好是看涨期权的是看涨期权的3倍倍二项式期权定价的例子INVESTMENTS | BODIE, KANE, MARCUS21-133003C300二项式期权定价的例子INVESTMENTS | BODIE, KANE, MARCUS21-14构建资产组合- 一股股票,三份看涨期权 (X = 110) 资产组合是完全对冲的:股票价格90120看涨期权0 -30净收益90 90因此 100 - 3C = $81.82 或Replication of Payoffs and Option ValuesINVESTMENTS | BODIE, KANE, MARCUS21-15

6、对冲比率在上例中, 对冲比率 = 1 股股票对3 份看涨期权或 1/3.通常, 对冲比率是:INVESTMENTS | BODIE, KANE, MARCUS21-16假设我们可以将一段时间分为三个间隔。每一间隔股票价格可能上涨20% 或下跌10%。假设股票初始售价是$100。扩展到需考虑三个间隔的情况INVESTMENTS | BODIE, KANE, MARCUS21-17SS +S + +S -S - -S + -S + + +S + + -S + - -S - - -扩展到需考虑三个间隔的情况INVESTMENTS | BODIE, KANE, MARCUS21-18三个间隔的可能收益

7、事件事件概率概率最终股票价格最终股票价格3 上升1/8100 (1.20)3 = $172.802 上升上升1 下降下降3/8100 (1.20)2 (.90) = $129.601 上升上升 2 下降下降3/8100 (1.20) (.90)2 = $97.203下降下降1/8100 (.90)3 = $72.90INVESTMENTS | BODIE, KANE, MARCUS21-19Co = SoN(d1) - Xe-rTN(d2)d1 = ln(So/X) + (r + 2/2)T / (T1/2)d2 = d1 - (T1/2)而且Co = 当前的看涨期权价值So = 当前的股票价

8、格N(d) = 标准正态分布小于d的概率布莱克-斯科尔斯期权定价INVESTMENTS | BODIE, KANE, MARCUS21-20X = 执行价格e = 2.71828, 自然对数的底r = 无风险利率(与期权到期期限相同的安全资 产连续复利的年收益率)T = 期权到期时间,按年记ln = 自然对数函数股票的标准差布莱克-斯科尔斯期权定价INVESTMENTS | BODIE, KANE, MARCUS21-21图21.6 标准正态曲线INVESTMENTS | BODIE, KANE, MARCUS21-22So = 100X = 95r = 0.10T = 0.25 (一个季度)

9、= 0.50 (每年50%)因此:例 21.1 布莱克-斯科尔斯定价INVESTMENTS | BODIE, KANE, MARCUS21-23使用正态分布表或Excel中的NORMDIST 函数,我们可以得到N (0.43) = 0.6664 ,N (0.18) = 0.5714.因此:Co = SoN(d1) - Xe-rTN(d2)Co = 100 X .6664 - 95 e- .10 X .25 X .5714 Co 正态分布的概率INVESTMENTS | BODIE, KANE, MARCUS21-24隐含波动率即期权价格中隐含的股票波动率水平。使用布莱克-斯科尔斯公式及实际的期

10、权价格来解决波动性问题。隐含波动率与股票价格的波动率一致吗?看涨期权定价INVESTMENTS | BODIE, KANE, MARCUS21-25布莱克-斯科尔斯模型与股利布莱克-斯科尔斯的看涨期权公式要求股票不支付股利。如果支付了股利怎么办?一种办法就是用调整股利后的股票价格来代替股票价格,即用S0 - PV (股利)代替S0 。INVESTMENTS | BODIE, KANE, MARCUS21-26例 21.3 布莱克-斯科尔斯看跌期权定价P = Xe-rT 1-N(d2) - S0 1-N(d1)使用例21.2 的数据:S = 100, r = .10, X = 95, = .5,

11、 T = .25我们计算得出:$95eINVESTMENTS | BODIE, KANE, MARCUS21-27P = C + PV (X) - So = C + Xe-rT - So使用例子中的数据:P = 13.70 + 95 e -.10 X .25 - 100P 看跌期权定价: 使用看涨-看跌期权平价定理INVESTMENTS | BODIE, KANE, MARCUS21-28对冲: 对冲比率或德尔塔持有不同的股票与期权以对冲价格风险。看涨期权的对冲比率 = N (d1)看跌期权的对冲比率= N (d1) - 1期权弹性期权价格变动百分比与股票价格变动百分比的比值。布莱尔-斯科尔斯

12、公式应用INVESTMENTS | BODIE, KANE, MARCUS21-29图 21.9 看涨期权价值与对冲比率INVESTMENTS | BODIE, KANE, MARCUS21-30购买保护性看跌期权以锁定资产组合价值下限,但其潜在的升值空间却是无限的。限制如果使用了看跌期权的指数会产生错误追踪。看跌期权的期限可能非常短。对冲比率或德尔塔随着股票价值的改变而改变。资产组合保险INVESTMENTS | BODIE, KANE, MARCUS21-31图21.10 保护性看跌期权策略的利润INVESTMENTS | BODIE, KANE, MARCUS21-32图 21.11 对

13、冲比率随股票变化而变化INVESTMENTS | BODIE, KANE, MARCUS21-33对错误定价期权的对冲赌博期权价值与波动性正相关。如果投资者认为期权的隐含波动率很低,那么很可能会有一笔有利可图的交易。股票价格的下降带来的利润被对冲掉了。表现取决于期权价格和隐含波动率。INVESTMENTS | BODIE, KANE, MARCUS21-34对冲比率与德尔塔适当的对冲比率取决于德尔塔。德尔塔是期权价值的变化与股票价值的变化的比值,或者说是期权定价曲线的斜率。德尔塔 = 期权价值的变化股票价值的变化INVESTMENTS | BODIE, KANE, MARCUS21-35例 2

14、1.6 错误定价期权的投机隐含波含波动率率= 33% 真正的波真正的波动率率= 35%期期权= 60 天天看跌期看跌期权价格价格P= 执行价格行价格= $90无无风险利率利率= 4%德德尔塔塔= INVESTMENTS | BODIE, KANE, MARCUS21-36表21.3 对冲的看跌期权资产组合的利润INVESTMENTS | BODIE, KANE, MARCUS21-37例 21.6 小结随着股票价格的变化,用来计算对冲比率的德尔塔也随之变化。伽玛 = 德尔塔对股票价格的敏感度期权伽玛类似于债券的凸性。对冲比率随市场条件的变化而变化。再平衡成为必要。INVESTMENTS | BODIE, KANE, MARCUS21-38德尔塔中性当你在股票和期权上建立了一个头寸,该头寸根据标的资产价格的波动进行了对冲,你的资产组合就被成为德尔塔中性。当股票价格波动时,该资产组合的价值并没有波动。INVESTMENTS | BODIE, KANE, MARCUS21-39表21.4 德尔塔中性期权资产组合的利润INVESTMENTS | BODIE, KANE, MARCUS21-40期权定价的经验证据当股票支付高股利时,布莱克-斯科尔斯定价公式表现很差。某个股票所有相同期限的期权的隐含波动率应该相等。实际上,当执行价格上升时,隐含波动率稳步下降。这可能与市场崩盘的恐惧有关。

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 医学/心理学 > 基础医学

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号