21求解二元一次方程组(第1课时)演示文稿

上传人:夏** 文档编号:592326139 上传时间:2024-09-20 格式:PPT 页数:11 大小:462KB
返回 下载 相关 举报
21求解二元一次方程组(第1课时)演示文稿_第1页
第1页 / 共11页
21求解二元一次方程组(第1课时)演示文稿_第2页
第2页 / 共11页
21求解二元一次方程组(第1课时)演示文稿_第3页
第3页 / 共11页
21求解二元一次方程组(第1课时)演示文稿_第4页
第4页 / 共11页
21求解二元一次方程组(第1课时)演示文稿_第5页
第5页 / 共11页
点击查看更多>>
资源描述

《21求解二元一次方程组(第1课时)演示文稿》由会员分享,可在线阅读,更多相关《21求解二元一次方程组(第1课时)演示文稿(11页珍藏版)》请在金锄头文库上搜索。

1、第五章 二元一次方程组2. 求解二元一次方程组(第1课时)回顾与思考还记得下面这一问题吗?设他们中有x个成人,y个儿童. 昨天,我们8个人去红山公园玩,买门票花了34元. 每张成人票5元,每张儿童票3元.他们到底去了几个成人、几个儿童呢?我们列出的二元一次方程组为:我们怎么获得这个二元一次方程组的解呢? 想想以前学习过的一元一次方程,能不能解决这一问题?解:设去了x个成人,则去了(8x)个儿童,根据题意,得: 用一元一次方程求解用二元一次方程组求解解:设去了x个成人,去了y个儿童,根据题意,得: 观察:列出的方程和方程组有何联系? 对你解二元一次方程组有何启示? 解:设去了x个成人,去了y个儿

2、童,根据题意,得: 用二元一次方程组求解由得:y = 8x. 将代入得:5x+3(8x)=34.解得:x = 5.把x = 5代入得:y = 3.所以原方程组的解为:例 解下列方程组: 前面解方程组的方法取个什么名字好? 解方程组的基本思路是什么?解方程组的主要步骤有哪些? 思考探索与归纳 解二元一次方程组的基本思路是消解二元一次方程组的基本思路是消元,把元,把“二元二元”变为变为“一元一元”. . 前面解方程组是将其中一个方程的某前面解方程组是将其中一个方程的某个未知数用含另一个未知数的代数式表示个未知数用含另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一出来,并代入另一个方程中

3、,从而消去一个未知数,化二元一次方程组为一元一次个未知数,化二元一次方程组为一元一次方程方程. .这种解方程组的方法称为代入消元这种解方程组的方法称为代入消元法,简称代入法法,简称代入法. .解二元一次方程组的步骤:解二元一次方程组的步骤: 第一步:在已知方程组的两个方程中选择一个适当的方程,将它的某个未知数用含有另一个未知数的代数式表示出来. 第二步:把此代数式代入没有变形的另一个方程中,可得一个一元一次方程. 第三步:解这个一元一次方程,得到一个未知数的值.第四步:回代求出另一个未知数的值.第五步:把方程组的解表示出来.第六步:检验 用代入消元法解二元一次方程组时,尽量选取一个未知数的系数的绝对值是1的方程进行变形;若未知数的系数的绝对值都不是1,则选取系数的绝对值较小的方程变形. 小窍门1.教材随堂练习2.补充练习:用代入消元法解下列方程组 它们的解依次为: 练一练1.习题5.22.解答习题5.1第3题3.预习下一课内容谈谈你的收获谈谈你的收获. .

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号